3D Printing and Global Cooperation to Create New Cost-Effective Field Kit for Disease Diagnosis

IMTS

Share this Article

According to the World Health Organization, there are up to 1 million new cases of leishmaniasis, a parasitic disease spread through the bites of sandflies, each year. The disease is curable if it’s diagnosed and treated early on, but it can lead to ulcers, and is responsible for 30,000 deaths annually, most often among people who are malnourished, in poverty, and/or living in unsanitary conditions.

But this month the Armauer Hansen Research Institute (AHRI) in Ethiopia is trialling a new 3D printed field kit, which could help save lives with more efficient diagnosis of leishmaniasis. The kit is part of a program meant to change up how we test and treat diseases.

Dr. Endalamaw Gadisa, based out of Addis Ababa, has been collaborating on the kit with PandemicTech, a virtual infectious disease incubator in Austin, Texas, and the New Venture Institute (NVI) at Flinders University, which is located in a former car factory that’s now an advanced manufacturing hub called the Tonsley Innovation Precinct in Austin’s sister city of Adelaide, South Australia.

Dr. Gadisa determined several issues with the disease testing in Ethiopia, including the difficulty of viewing samples under available microscopes; fragile test tubes which store a liquid medium (reagent) for testing; the cost of the reagent; and the fact that it can take over a week to get results.

These types of  issues make it necessary to develop more practical and effective diagnostic equipment and tools; 3D printing has helped with this type of project multiple times in the past.

“We don’t need more software to solve problems already solved 10 times over, what we do need is innovation which has impact, that creates value by applying new approaches to global challenges,” said Matt Salier, the director of NVI.

Dr. Gadisa developed a test tube design that could provide test results in just three days and only needs 10 microliters of reagent, as opposed to 25 milliliters. However, he was unable to build the prototype on his own. So Andrew Nerlinger, the director of PandemicTech, offered to work with him on his design as an original pilot project for the incubator, and then contacted Salier.

Nerlinger explained, “When I eventually described the project to Matt Salier during the South by Southwest conference in March 2017, he offered to collaborate and introduced me to NVI’s Raphael Garcia, who ultimately worked directly with Dr Gadisa and me on several design iterations resulting in the prototype depicted in the most recent photos.”

According to Salier, these types of projects are why Flinders NVI always works to demonstrate how business models can combine with new technologies to address society’s large-scale problems. The sister city relationship between Adelaide and Austin helped get the conversation going.

“Flinders NVI has had an office presence in our sister city Austin for over four years now with our local partner, Tech Ranch,” said Salier. “I met Andrew from Endura Ventures as he was establishing PandemicTech and we saw an opportunity to apply our design and innovative manufacturing expertise at Tonsley.”

The first prototype was 3D printed in three parts – a cork on top to plug the culture tube, a main body to hold the fluid and make diagnosis through microscopic inspection possible, and a removable bottom plug.  The design of the tube’s main body was refined multiple times in order to increase the body’s durability and clarity.

The body features a central hole, which connects to the plug, making the tube reusable, and was printed out of clear liquid resin, while different materials were used for the plugs so they can completely seal the body but still be removed easily for cleaning and sterilization.

3D printed test tube and caps that form part of the test kit.

The prototyping process took less than four months – after several solutions were considered through a Design-Thinking process, the best was designed using CAD software, and 3D printed on NVI’s Stratasys Objet Connex.

It cost less than AUD$5,000 to develop the final kit, which is packed inside an off-the-shelf Pelican case using foam laser-cut at Flinders. Additionally, the field kit includes 3D printed microscopes, made by South Australian education startup Go Micro, that can be attached to a smartphone camera in order to turn it into a powerful, 60x magnification microscope, capable of collecting photos for disease diagnosis.

Even though Adelaide, Addis Ababa, and Austin are separated by thousands of miles, Nerlinger said that the collaboration between the three has helped create high-quality, reusable prototypes for far less than the normal cost for “a neglected disease that causes immense morbidity and mortality in the most austere and resource limited environments in the world,” according to The Lead.

Nerlinger said, “We were also excited that NVI was able to match Dr Gadisa with one of its own technologies, the microscope attachment used on a smartphone that is able to read the results of the leishmaniasis testing.

“The new testing device will allow more patients to be treated earlier and decrease the amount of time it takes to obtain a diagnosis. It will also potentially allow health workers to provide a diagnosis to patients while conducting medical work in the remote regions often most impacted by leishmaniasis.

“If the testing is successful then the opportunity exists to build a financially sustainable social impact company around the testing kit that brings together resources from Ethiopia and Australia.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

 

 

Share this Article


Recent News

3D Printing News Briefs, April 20, 2024: Manufacturing 4.0 Consortium, Blow Molding, & More

EOS & AMCM Join Forces with University of Wolverhampton to Establish UK Centre of Excellence for Additive Manufacturing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Sponsored

Why Corrosive Resistant Materials Are Important to the Success of 3D Printing Across Industries

The adoption of additive manufacturing (AM) is accelerating across many major industries. As this technological shift unfolds, the importance of corrosion resistance has emerged as a challenge for 3D printing...

America Makes Announces IMPACT 2.0: $6.6M in New 3D Printing Funding

America Makes, the Manufacturing Innovation Institute (MII) based in Youngstown, Ohio, has announced IMPACT (Improvement in Manufacturing Productivity via Additive Capabilities and Techno-Economic Analysis) 2.0, a project call which will...

3D Printing Webinar and Event Roundup: April 14, 2024

We’re starting off the week’s 3D printing webinars and events at ASTM AMCOE’s 11th Snapshot Workshop and MACH Exhibition. Stratasys continues its advanced training courses, SME is holding a virtual...

AMUK Welcomes Airframe Designs as British 3D Printing Industry Grows

While the UK is not the hub for 3D printer and materials manufacturers as other nations, the country continues to excel at the research, development, and application of additive manufacturing...