Researchers 3D Print Tissue That Mimics Human Bile Duct

IMTS

Share this Article

[Image via Cancer.org]

A bile duct plays a crucial role in the body, carrying bile from the liver to the intestine to facilitate digestion. Cancer of the bile duct has an alarmingly low survival rate, and treatment requires that the disease be caught early enough for the affected part of the bile duct to be removed. But there’s some good news for those suffering from conditions of the bile duct, as researchers at Northwestern University have 3D printed a mini-tissue that mimics it.

The research is documented in a study entitled “Tailoring nanostructure and bioactivity of 3D-printable hydrogels with self-assemble peptides amphiphile (PA) for promoting bile duct formation,” which you can access here. Lead author Ming Yan and colleagues 3D printed a nanostructure consisting of peptides amphiphile, or PAs, bioink and bile duct cells, or cholangiocytes.

“3D-printing has expanded our ability to produce reproducible and more complex scaffold architectures for tissue engineering applications,” the abstract states. “In order to enhance the biological response within these 3D-printed scaffolds incorporating nanostructural features and/or specific biological signaling may be an effective means to optimize tissue regeneration. Peptides amphiphiles (PAs) are a versatile supramolecular biomaterial with tailorable nanostructural and biochemical features. PAs are widely used in tissue engineering applications such as angiogenesis, neurogenesis, and bone regeneration. Thus, the addition of PAs is a potential solution that can greatly expand the utility of 3D bioprinting hydrogels in the field of regenerative medicine.”

The PAs and cholangiocytes were mixed with thiolated gelatin at 37°C and 3D printed at 4ºC using an EnvisionTEC 3D-Bioplotter, one of the most-utilized bioprinters on the market. The material retained integrity as the bioinks printed into filaments capable of supporting multi-layered scaffolds. The researchers stabilized the scaffold by cross-linking a derivative of ethylene glycol with calcium ions; scaffold stability was observed in culture for more than a month at a temperature of 37°C.

First author Ming Yan. [Image: Northwestern via Physics World]

The researchers also explored the use of a laminin-derived peptide (Ile-Lys-Val-Ala-Val, IKVAV) and the influence its inclusion in the bioink would have on the bile duct cells. Laminin is a molecule necessary for cell adhesion, and after bioprinting, the bile duct cells remained viable in vitro. Staining revealed the formation of functional bile-cell-based tube structures; when cultured in IKVAV bioink, the structures showed enhanced morphology, forming functional tubular structures.

This is the first time that a bioink-based system supplemented with PAs was used for bile duct tissue engineering. The research shows a lot of promise; the bioprinted bile ducts as well as in vitro systems created with the bioinks have the potential to be valuable for research into bile duct cancer as well as the testing of treatments. Right now, bile duct cancer is a grave diagnosis to receive, but the enhanced research that could be made possible by this work offers hope for better understanding and more effective treatments.

As a next step, the researchers now want to optimize the peptide concentration and test other signaling molecules within the bioinks to enhance the formation of functional tubular structures that mimic those found in the liver.

Additional authors of the research paper include P.L. Lewis and R.N. Shah.

[Source: Physics World]

 

Share this Article


Recent News

Liquid Metal 3D Printing Sector Emerges with Fluent Metal’s $5.5M Investment

3DPOD Episode 191: Amy Alexander, 3D Printing at the Mayo Clinic



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3DPOD Episode 190: Generative Design for 3D Printing with Novineer CEO Ali Tamijani

Ali Tamijani, a professor in the Department of Aerospace Engineering at Embry-Riddle Aeronautical University, has an extensive background in composites, tool pathing, and the development of functional 3D printed parts,...

Featured

3DPOD Episode 189: AMUG President Shannon VanDeren

Shannon VanDeren is a consultant in the 3D printing industry, focusing on implementation and integration for her company, Layered Manufacturing and Consulting. For nearly ten years, she has been involved...

3DPOD Episode 188: Clare Difazio of E3D – Growing the Industry, and Growing With the Industry

Clare DiFazio’s journey into the 3D printing industry was serendipitous, yet her involvement at critical moments has significantly influenced the sector. Her position as Head of Marketing & Product Strategy...

Featured

Printing Money Episode 15: 3D Printing Markets & Deals, with AM Research and AMPOWER

Printing Money returns with Episode 15! This month, NewCap Partners‘ Danny Piper is joined by Scott Dunham, Executive Vice President of Research at Additive Manufacturing (AM) Research, and Matthias Schmidt-Lehr,...