Metalysis Provides Update on Development of Aluminum-Scandium Alloy for 3D Printing

Share this Article

About a year ago, Metalysis signed on to a project focused on the development of a new aluminum-scandium alloy for 3D printing. Demand for strong alloys like aluminum-scandium is increasing, particularly in the automotive and aerospace industries, but scandium is expensive – in fact, it can triple manufacturing costs. It’s also somewhat scarce, mined as a byproduct with little surety of supply. Metalysis joined the project last year to focus on those two issues – cost and lack of supply.

One of the reasons scandium is in such high demand for the automotive and aerospace industries is that it is extremely lightweight. Lightweighting aircraft and automobiles has been a priority among manufacturers, as lighter weight means lower cost, as well as higher performance with a lower environmental footprint. Affordable, accessible scandium could make a big difference in reducing emissions of airplanes and automobiles.

This week, Metalysis provided an update on how the project is going. The company is using its modular electrochemical technology to produce a scandium-rich feedstock addition, supporting master alloy production. This process can produce a large variety of powder alloys at lower costs, and in more environmentally-friendly ways, than traditional melting processes.

[Image: Australian Mines]

In H2 2017, Phase I of the project took place, involving proof-of-principle activities using Metalysis’ Generation 1 technology, which successfully produced the AlSc alloy feedstock addition. The alloy is more than 15 times higher in scandium content than the currently available 2wt% scandium master alloy, and was produced at lower cost. In H1 2018, during Phase II, Metalysis began qualifying scandium oxide to produce the AlSc alloy feedstock from new sources. This is an effort to address global production and supply concerns.

To continue doing this in the second half of 2018, Metalysis has accepted a new partner for the project. Australian Mines is a producer and supplier of battery and technology metals, and is working on the development of cobalt-scandium-nickel materials for cleaner and more sustainable energy sources. Scandium oxide from Australian Mines’ Sconi project in northern Queensland will be evaluated and used for further aluminum-scandium production.

The research and development program has employed several partners working with scandium oxide technology, trading, supply and mine development and production. The program is taking place at Metalysis’ Materials Discovery Center in South Yorkshire, UK, where Metalysis conducts commercial projects with corporate partners and academia to produce advanced materials that are becoming in higher demand among industries such as automotive, advanced manufacturing and additive manufacturing.

The program will also benefit Metalysis’ Materials Manufacturing Center, also in South Yorkshire. The company’s “Generation 4” industrial scale production facility is located here. The modular Generation 4 facility builds upon Generations 1 through 3 of Metalysis’ technology is capable of producing hundreds of tonnes of specialty powder alloys. Generation 4’s commercial production will begin later in 2018, and a potential launch product will be the aluminum scandium alloy.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

Share this Article


Recent News

Jet Car Dragster Gets 3D Printed PEEK Upgrades

Dream M&As: 3D Printing Mergers and Acquisitions We’d Like to See in 2021, Part 3



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Molyworks Turns Scrap Metal into Metal 3D Printing Powder

Molyworks is one of my favorite 3D printing startups. The company has huge potential with its containerized atomization machine, which convert scrap metal into 3D printing powder. This was underscored...

NAMIC Global AM Summit 2020: Sustainability, Food 3D Printing, and More

Singapore has been positioning itself as a 3D printing hub for a number of years now. Through the National Additive Manufacturing – Innovation Cluster (NAMIC), it has coordinated investment, meetings,...

Ansys and EOS Partner for Metal 3D Printing Simulation

One of the most exciting trends currently taking place in additive manufacturing (AM) is the development of simulation software for improving the predictability and repeatability of 3D printing technology. An...

Sandvik Latest Partner in GE Additive’s Binder Jet Metal 3D Printing Beta

A few years back, GE Additive introduced a scalable metal binder jet 3D printing system at its Additive Technology Center (ATC) in Cincinnati, Ohio, which joined the existing metal AM...


Shop

View our broad assortment of in house and third party products.