A team of researchers from Virginia Tech University have developed a new method of microscale 3D printing, which uses in-situ resin mixing and robotics to 3D print multimaterial with programmed stiffness – without cross contaminating any of the properties. The researchers have dubbed their new method multimaterial programmable additive manufacturing with integrated resin delivery – say that five times fast – and it could be used in a variety of different applications, such as actuation, aircraft wing structures, artificial muscles, energy absorption, flexible armor, microrobotics, and protective coatings.
Stretching normal material in one direction means that it will shrink in the other direction. But, Virginia Tech’s patented multimaterial process and design makes it possible to create specific modulus (flexibility) distributions in a build, which then allows for programmed shrinkage or expansion to take place throughout the material body; this is known as programmed morphing.
Xiaoyu “Rayne” Zheng, who is an assistant professor of mechanical engineering in the university’s College of Engineering, as well as a member of the Macromolecules Innovation Institute, explained that this new microscale manufacturing system is also able to be up-scaled to centimeter levels…and even levels above that.
“We use this new technique to create materials with programmed stiffness. Basically, you can program where the modulus is distributed in 3-D. With this programming we can achieve morphing capability—to stretch and deform in different directions,” Zheng explained.
“The technique is a robotic-based additive manufacturing, an integrated fluidic system that allows us to deliver different ink [resin] as feedstock. The process is also self-cleaning so that there is no cross-contamination between inks.”
Zheng certainly knows what he’s talking about, having worked with 3D printing at the nanoscale in the past. He said that 3D printing hopes to get to a place where multiple materials can be used to 3D print a functional device without having to rely on inordinate amounts of extra construction, like welding, tooling, gluing, and fitting.
“Achieving this goal requires us to put an array of different material properties into a single platform and connect them,” Zheng explained. “The added degree of material design freedom allows us to achieve negative, positive-to-zero morphing strains without changing the 3-D micro-architecture of a material.”

A micro-lattice structure made from different materials. Multimaterial programmable additive manufacturing allows for printing materials of different modulus without cross-contamination. [Image: Virginia Tech]
As opposed to traditional 3D printed materials with similar base materials, multimaterial metamaterials feature varying rigidity – for example, rigid brittle in a 3D lattice framework all the way down to a soft elastomeric. This is definitely a change from current 3D printing methods, which can have somewhat limited capabilities in terms of incorporating multiple materials in complex, 3D architectures with microscale resolutions.
“We envision these programmable morphing material concepts will find applications in directional strain amplifications, actuations, flexible electronics, and the design of lightweight metamaterials with tailored stiffness and toughness. The new material design space offered by rapid fabrication of dissimilar material constituents distributed within a micro-lattice architecture opens up new dimensions of 3-D printing of multimaterials with a large degree of stiffness variance,” Zheng said.
What do you think of this story? Let us know your thoughts; join the discussion of this and other 3D printing topics at 3DPrintBoard.com or share your comments below.
[Source: Phys.org]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
Print Services
Upload your 3D Models and get them printed quickly and efficiently.
You May Also Like
Advancing Workforce Development for Industrial Additive Manufacturing
As additive manufacturing (AM) continues its transition from a niche technology to a core element of industrial production, workforce development has emerged as one of the industry’s most pressing issues....
Scaling DLP: How Visitech Moves Production Beyond the “Printer Farm”
With hundreds of light engines shipped in 2025, Visitech is leveraging its new Texas facility and scrolling DLP architecture to redefine industrial throughput. By achieving up to 20 times the...
Reuniting ExOne and voxeljet: An Investor’s View on Building a Global Industrial Sand Printing Leader
Authored by Whitney Haring-Smith, Chair of the Board, ExOne Global Holdings & Managing Partner, Anzu Partners At Anzu Partners, we invest with conviction in industrial technologies that create categories—and then...
Adoption of Advanced Powder Metal Manufacturing in the Global Small Arms Space – SHOT Show 2026 Additive Manufacturing Analysis
Back in 2013, I remember being completely blown away when a company called Solid Concepts reportedly additively manufactured nearly a complete firearm as a proof of concept. Although desktop polymer...























