Critical Materials Institute Develops Less Expensive 3D Printed Magnets

Share this Article

3D printing is an eclectic technology, used for applications in almost every industry you can think of. It has come a long way from simply being able to make things out of plastic or pure metal, and has begun to be used to make materials with special properties such as conductivity and magnetism. Many researchers have developed different ways to 3D print magnets, and the latest organization to contribute to the field is the US Department of Energy’s Critical Materials Institute (CMI).

CMI used 3D laser metal printing to optimize a permanent magnet material that, the institute believes, could be a more economical alternative to the expensive rare earth neodymium iron boron (NdFeB) magnets used for some applications. The alloy used by CMI was composed of cerium, a less expensive and more plentiful rare earth, as well as cobalt, iron, and copper. The researchers 3D printed various samples demonstrating a range of compositions.

“This was a known magnet material, but we wanted to revisit it to see if we could find exceptional magnetic properties,” said CMI scientist Ryan Ott. “With four elements, there is a vast space of compositions to hunt around in. Using 3D printing greatly accelerates the search process.”

It can take weeks to produce magnets using conventional production methods, but 3D printing a range of them only took two hours. The researchers identified the samples with the most promising properties, then made a second set of samples using conventional casting methods and compared them to the originals. These confirmed the findings of the 3D printed samples.

“It is very challenging to use laser printing to identify potential permanent magnet phases for bulk materials because of the need to develop the necessary microstructure,” said CMI scientist Ikenna Nlebedim. “But this research shows that additive manufacturing can be used as an effective tool for rapidly and economically identifying promising permanent magnet alloys.”

The research was documented in a paper entitled “Rapid Assessment of the Ce-Co-Fe-Cu System for Permanent Magnetic Applications,” which you can access here. Authors include F. Meng, R.P. Chaudhary, K. Ganhda, I.C. Nlebedim, A. Palasyuk, E. Simsek, M.J. Kramer, and R.T. Ott.

“Arrays of bulk specimens with controlled compositions were synthesized via laser engineered net shaping (LENS) by feeding different ratios of alloy powders into a melt pool created by a laser,” the paper explains. “Based on the assessment of the magnetic properties of the LENS printed samples, arc-melted and cast ingots were prepared with varying Fe (5–20 at.%) and Co (60–45 at.%) compositions while maintaining constant Ce (16 at.%) and Cu (19 at.%) content. The evolution of the microstructure and phases with varying chemical compositions and their dependence on magnetic properties are analyzed in as-cast and heat-treated samples. In both the LENS printed and cast samples, we find the best magnetic properties correspond to a predominantly single-phase Ce(CoFeCu)5 microstructure in which high coercivity (Hc > 10 kOe) can be achieved without any microstructural refinement.”

The Critical Materials Institute is a Department of Energy Innovation Hub led by the DOE’s Ames Laboratory and supported by the Office of Energy Efficiency and Renewable Energy’s Advanced Manufacturing Office. CMI researches ways to reduce or eliminate reliance on rare earth metals and other materials currently critical to clean energy.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

 

Facebook Comments

Share this Article


Related Articles

ORNL and UMaine Initiative Receives Funding to Create New Bio-Based 3D Printing Materials

3D Printing News Briefs: November 17, 2018



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Freelancer Partners with Department of Energy for Advanced Manufacturing Challenges

Crowdsourcing site Freelancer has teamed up with NASA for more than one competition involving 3D printing and 3D design, including a robot arm and a system for recycling in space. Now...

3D Printed Artificial Heart Pump Demonstrates Application of Embedded Magnet Printing

Kai von Petersdorff-Campen, a doctoral student in the mechanical and process engineering department at ETH Zurich, set out this spring to make a 3D printed artificial heart pump. He succeeded,...

3D Printed Magnets In Functional Assemblies Could Lead to New Machines and Medical Devices

Since 3D printing began to diversify, allowing for the printing of materials beyond just metal and plastic, scientists have been experimenting with the 3D printing of magnets. 3D printed magnets...

ORNL Develops a New 3D Printing Material and Showcases Several Others

Lignin is a complex organic polymer that is an important part of the cell walls of many plants, making them woody and rigid. It’s also a 3D printable material, much...


Training


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!