AM Energy

Critical Materials Institute Develops Less Expensive 3D Printed Magnets

HP March 26th Webinar

Share this Article

3D printing is an eclectic technology, used for applications in almost every industry you can think of. It has come a long way from simply being able to make things out of plastic or pure metal, and has begun to be used to make materials with special properties such as conductivity and magnetism. Many researchers have developed different ways to 3D print magnets, and the latest organization to contribute to the field is the US Department of Energy’s Critical Materials Institute (CMI).

CMI used 3D laser metal printing to optimize a permanent magnet material that, the institute believes, could be a more economical alternative to the expensive rare earth neodymium iron boron (NdFeB) magnets used for some applications. The alloy used by CMI was composed of cerium, a less expensive and more plentiful rare earth, as well as cobalt, iron, and copper. The researchers 3D printed various samples demonstrating a range of compositions.

“This was a known magnet material, but we wanted to revisit it to see if we could find exceptional magnetic properties,” said CMI scientist Ryan Ott. “With four elements, there is a vast space of compositions to hunt around in. Using 3D printing greatly accelerates the search process.”

It can take weeks to produce magnets using conventional production methods, but 3D printing a range of them only took two hours. The researchers identified the samples with the most promising properties, then made a second set of samples using conventional casting methods and compared them to the originals. These confirmed the findings of the 3D printed samples.

“It is very challenging to use laser printing to identify potential permanent magnet phases for bulk materials because of the need to develop the necessary microstructure,” said CMI scientist Ikenna Nlebedim. “But this research shows that additive manufacturing can be used as an effective tool for rapidly and economically identifying promising permanent magnet alloys.”

The research was documented in a paper entitled “Rapid Assessment of the Ce-Co-Fe-Cu System for Permanent Magnetic Applications,” which you can access here. Authors include F. Meng, R.P. Chaudhary, K. Ganhda, I.C. Nlebedim, A. Palasyuk, E. Simsek, M.J. Kramer, and R.T. Ott.

“Arrays of bulk specimens with controlled compositions were synthesized via laser engineered net shaping (LENS) by feeding different ratios of alloy powders into a melt pool created by a laser,” the paper explains. “Based on the assessment of the magnetic properties of the LENS printed samples, arc-melted and cast ingots were prepared with varying Fe (5–20 at.%) and Co (60–45 at.%) compositions while maintaining constant Ce (16 at.%) and Cu (19 at.%) content. The evolution of the microstructure and phases with varying chemical compositions and their dependence on magnetic properties are analyzed in as-cast and heat-treated samples. In both the LENS printed and cast samples, we find the best magnetic properties correspond to a predominantly single-phase Ce(CoFeCu)5 microstructure in which high coercivity (Hc > 10 kOe) can be achieved without any microstructural refinement.”

The Critical Materials Institute is a Department of Energy Innovation Hub led by the DOE’s Ames Laboratory and supported by the Office of Energy Efficiency and Renewable Energy’s Advanced Manufacturing Office. CMI researches ways to reduce or eliminate reliance on rare earth metals and other materials currently critical to clean energy.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

 

Share this Article


Recent News

AddUp Announces Deputy CEO & Innovations in Medical & Injection Molding AM

3D Printing News Unpeeled: Solenoids, Hydrogel Buildings and Missiles



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing News Briefs, February 17, 2024: Shot Blasting, Service Bureaus, & More

In today’s 3D Printing News Briefs, we’re starting out with post-processing, as SKZ Würzburg is using a shot blast system from AM Solutions for its research. Moving on to business,...

MIT Researchers Use AI to Optimize Stiffness and Toughness Balance in 3D Printed Parts

In January, researchers from the Massachusetts Institute of Technology’s (MIT’s) Computer Science and Artificial Intelligence Laboratory (CSAIL) published a study in the journal Science Advances, which details an algorithm they...

Northrop Grumman Taps GKN Aerospace for 3D Printed Solid Rocket Motors

At the beginning of January, UK aerospace manufacturer GKN Aerospace announced it was investing over $60 million to boost its additive manufacturing (AM) capacity in Trollhättan, Sweden. Now, GKN is...

3D Printing News Unpeeled: 3D Printed Golf Clubs, an India Made SLS Printer, MIT Liquid Metal and a Vietnamese Trauma Implant

After Cobra’s King putters, the firm now has a line of 8 clubs that use MJF binder jet. The Agera and others have different sized insets and cost $349. The...