Swedish Company RUAG is 3D Printing Satellite Components for Space

Share this Article

sen3Space exploration and additive manufacturing go together like Oreos and milk. Over the last two years, we have seen an influx of companies within the aerospace industry begin adopting 3D printing as a way to cut their costs by reducing payload weights, or in a couple of cases, the actual weight of a spacecraft. Elon Musk is using additive manufacturing to lighten the launch load for SpaceX missions, while NASA is exploring the technology in a variety of ways as well.

Swedish company RUAG, known for their highly reliable on-board satellite equipment, which includes microwave electronics, antennas, separation systems, and various other components, has turned their attention to 3D printing as a means of production.

RUAG’s Space division has teamed up with Altair, a US company known for their design optimization skills, as well as Germany-based EOS, which has vast experience producing light-weight metal-alloy components via additive manufacturing technology.

3D Printed Antenna Support

3D Printed Antenna Support

The goal for RUAG Space is to produce a lighter, more efficient antenna support for an Earth Observation (EO) satellite, a successor to the Sentinel-1 radar satellite. To get started the company relied upon Altair’s software to redesign the support structure using as little material as possible and exploit the freedom of design enabled through the use of 3D Printing. Once a design was agreed upon, they turned to EOS which printed the finished component via a powder-bed laser sintering machine.

“Our goal is to fit Sentinel-1 successors with antenna supports that have been manufactured using a 3D printer,” said RUAG Space CTO Michael Pavloff. “3D printing has enormous potential for our business, and we’re currently in the process of developing further space applications.”

RUAG Space managed to produce a part which was half the weight of that used on the Sentinel-1, while possessing better rigidity. The antenna support was a staggering 40cm in length, making it the largest known object ever 3D printed via a powder-bed laser sintering system. A rigorous set of tests are being conducted on the support, which should conclude by year’s end.

“The collaboration with RUAG Space and EOS allows us to deliver even more innovative end-to-end design and optimization processes to exploit the benefits of additive sen4manufacturing.” said Altair Managing Director Pietro Cervellera.

Future applications of this technology could mean more than the production of a single satellite component. In fact, entire sections of a satellite may one day be printed out, including their reflectors, heating pipes, harnesses, and other components which could be integrated directly into the underlying structure of the satellite, printed in one piece.

There is no doubt that this incredible technology will continue to save those involved in the aerospace industry quite a bit of money, while also reducing the amount of raw material needed for the production of various items. Let’s hear your thoughts on this story in the 3D Satellite Component forum thread on 3DPB.com.

Sentinel-1

Sentinel-1

Share this Article


Recent News

What is Metrology Part 21 – Getting Started with Processing

Analyzing & Solving 3D Printing Issues with Microfluidics



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Multimaterial 3D Printing Filaments for Optoelectronics

Authors Gabriel Loke, Rodger Yuan, Michael Rein, Tural Khudiyev, Yash Jain, John Joannopoulous, and Yoel Fink have all come together to explore new filament options, with their findings outlined in...

Germany: Two-Photon Polymerization 3D Printing with a Microchip Laser

Laser additive manufacturing technology is growing more prevalent around the world for industrial uses, leading researchers to investigate further in relation to polymerization, with findings outlined in the recently published...

3D Printing Polymer-Bonded Magnets Rival Conventional Counterparts

Authors Alan Shen, Xiaoguang Peng, Callum P. Bailey, Sameh Dardona, and W.K Anson explore new techniques in ‘3Dprinting of polymer-bonded magnets from highly concentrated, plate-like particle suspension.’ While magnets have...

South Africa: FEA & Compression Testing of 3D Printed Models

Researchers D.W. Abbot, D.V.V. Kallon, C. Anghel, and P. Dube delve into complex analysis and testing in the ‘Finite Element Analysis of 3D Printed Model via Compression Tests.’ For this...


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!