Researchers Develop Robotic Arm System for Studying Irregular 3D Printed Parts

Share this Article

The 3D printing industry today encompasses a wide range of software, hardware, and materials—not to mention many different peripheral products and technologies that are available to help in areas such as post-processing, troubleshooting, and more. Electronics, bionics, live cell growth, and a variety of other fields and disciplines are also often combined with 3D printing—allowing designers, engineers, and researchers to open up untold realms of innovation. Because of this, most industries around the world today are enjoying the benefits of both 3D design and printing in one form or another—from automotive to aerospace, serious science research to the medical field, and from high fashion to retail—just to name a few.

By combining a robotic arm and mass spectrometry, researchers can analyze the surface of 3D objects, such as footballs. [Image: American Chemical Society]

Along with such innovation and impacts around the world comes a great need for perfection too, leading to the emergence of more tools for analyzing 3D printed parts. Now, medical researchers are expanding 3D printing analyzation techniques with a robotic arm that includes mass spectrometry. Their goal is to correct irregular designs and prints, improving 3D printing in both forensics (crime scene analysis) and pharmaceutics. Facundo M. Fernández is lead researcher and developer on this new project, outlined in a recently published paper, ‘Robotic Surface Analysis Mass Spectrometry (RoSA-MS) of Three-Dimensional Objects.’

“In RoSA-MS, a sampling probe is attached to a robotic arm that has 360° rotation through 6 individual joints,” state the researchers in their paper. “A 3D laser scanner, also attached to the robotic arm, generates a digital map of the sample surface that is used to direct a probe to specific (x, y, z) locations. The sampling probe consists of a spring-loaded needle that briefly contacts the object surface, collecting trace amounts of material.

“The probe is then directed at an open port liquid sampling interface coupled to the electrospray ion source of a mass spectrometer. Material on the probe tip is dissolved by the solvent flow in the liquid interface and mass analyzed with high mass resolution and accuracy. The surface of bulky, nonplanar objects can thus be probed to produce chemical maps at the molecular level.”

While the technique is still in the developmental stages, the researchers have been testing it outside the lab. Currently, refinements are still needed so the system will be able to handle more unwieldy pieces without assistance from a human counterpart. The researchers also found that the system was only capable of discerning specific types of molecules as they used a specialized camera for managing the robotic arm during plasma ionization collection. They have, however, been able to detect caffeine from within a cup of coffee.

As they continue in their work, the team plans to examine irregular 3D printed shapes in regards to direct surface sampling. The researchers have also been working with applications to include:

  • Food sample surfaces
  • Lifestyle chemistry
  • Chemical reactions on curved substrates

The design for both the probe and the ionization source are easily modified, meaning the system could lend itself to many other applications.

What do you think of this news? Let us know your thoughts; join the discussion of this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Source: ACS]

 

Facebook Comments

Share this Article


Recent News

3D Printing and the Circular Economy Part 7: the Viability of 3D Printing

What is Metrology Part 2: CMM



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

What is Metrology?

3D Metrology  What is 3D metrology? Metrology is the science of measurement. It establishes a common understanding of units, crucial in linking and understanding human activities. When we apply metrology...

Interview with Mei Ogata of JTL America on Testing for 3D Printing

As we move from prototyping to production, testing is becoming more and more important. Crucial in qualifying parts and materials, but also in establishing QA or developing new materials, testing...

Fast Things 8: The Shape Game and Mrs. Incredible

Imagine the answer to life, the universe, and everything is: donut. In a world of Fast Things, 3D Printing is the logical production technology. With our technology, you can go...

3D Printing News Briefs: June 8, 2019

In this week’s 3D Printing News Briefs, we’re talking about partnerships, new software and buildings, and a neat 3D printed miniature. Together, Evolve Additive Solutions and Evonik are developing materials...


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!