Researchers Develop Robotic Arm System for Studying Irregular 3D Printed Parts

IMTS

Share this Article

The 3D printing industry today encompasses a wide range of software, hardware, and materials—not to mention many different peripheral products and technologies that are available to help in areas such as post-processing, troubleshooting, and more. Electronics, bionics, live cell growth, and a variety of other fields and disciplines are also often combined with 3D printing—allowing designers, engineers, and researchers to open up untold realms of innovation. Because of this, most industries around the world today are enjoying the benefits of both 3D design and printing in one form or another—from automotive to aerospace, serious science research to the medical field, and from high fashion to retail—just to name a few.

By combining a robotic arm and mass spectrometry, researchers can analyze the surface of 3D objects, such as footballs. [Image: American Chemical Society]

Along with such innovation and impacts around the world comes a great need for perfection too, leading to the emergence of more tools for analyzing 3D printed parts. Now, medical researchers are expanding 3D printing analyzation techniques with a robotic arm that includes mass spectrometry. Their goal is to correct irregular designs and prints, improving 3D printing in both forensics (crime scene analysis) and pharmaceutics. Facundo M. Fernández is lead researcher and developer on this new project, outlined in a recently published paper, ‘Robotic Surface Analysis Mass Spectrometry (RoSA-MS) of Three-Dimensional Objects.’

“In RoSA-MS, a sampling probe is attached to a robotic arm that has 360° rotation through 6 individual joints,” state the researchers in their paper. “A 3D laser scanner, also attached to the robotic arm, generates a digital map of the sample surface that is used to direct a probe to specific (x, y, z) locations. The sampling probe consists of a spring-loaded needle that briefly contacts the object surface, collecting trace amounts of material.

“The probe is then directed at an open port liquid sampling interface coupled to the electrospray ion source of a mass spectrometer. Material on the probe tip is dissolved by the solvent flow in the liquid interface and mass analyzed with high mass resolution and accuracy. The surface of bulky, nonplanar objects can thus be probed to produce chemical maps at the molecular level.”

While the technique is still in the developmental stages, the researchers have been testing it outside the lab. Currently, refinements are still needed so the system will be able to handle more unwieldy pieces without assistance from a human counterpart. The researchers also found that the system was only capable of discerning specific types of molecules as they used a specialized camera for managing the robotic arm during plasma ionization collection. They have, however, been able to detect caffeine from within a cup of coffee.

As they continue in their work, the team plans to examine irregular 3D printed shapes in regards to direct surface sampling. The researchers have also been working with applications to include:

  • Food sample surfaces
  • Lifestyle chemistry
  • Chemical reactions on curved substrates

The design for both the probe and the ionization source are easily modified, meaning the system could lend itself to many other applications.

What do you think of this news? Let us know your thoughts; join the discussion of this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Source: ACS]

 

Share this Article


Recent News

Liquid Metal 3D Printing Sector Emerges with Fluent Metal’s $5.5M Investment

3DPOD Episode 191: Amy Alexander, 3D Printing at the Mayo Clinic



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3DPOD Episode 190: Generative Design for 3D Printing with Novineer CEO Ali Tamijani

Ali Tamijani, a professor in the Department of Aerospace Engineering at Embry-Riddle Aeronautical University, has an extensive background in composites, tool pathing, and the development of functional 3D printed parts,...

Featured

3DPOD Episode 189: AMUG President Shannon VanDeren

Shannon VanDeren is a consultant in the 3D printing industry, focusing on implementation and integration for her company, Layered Manufacturing and Consulting. For nearly ten years, she has been involved...

3DPOD Episode 188: Clare Difazio of E3D – Growing the Industry, and Growing With the Industry

Clare DiFazio’s journey into the 3D printing industry was serendipitous, yet her involvement at critical moments has significantly influenced the sector. Her position as Head of Marketing & Product Strategy...

Featured

Printing Money Episode 15: 3D Printing Markets & Deals, with AM Research and AMPOWER

Printing Money returns with Episode 15! This month, NewCap Partners‘ Danny Piper is joined by Scott Dunham, Executive Vice President of Research at Additive Manufacturing (AM) Research, and Matthias Schmidt-Lehr,...