Researchers Use 3D Printing to Create Super-Strong Material

Share this Article

One commonly cited shortcoming of 3D printing is its tendency to produce parts that aren’t quite as strong as those produced by more traditional kinds of manufacturing. That’s becoming less and less true, however, as materials and methods evolve, and 3D printed parts are demonstrating strength and robustness equal to or even surpassing that of their conventionally made counterparts. Now a pair of researchers at the University of Wisconsin-Madison have developed a 3D printed material that is much stronger than other materials used for building.

Engineering physics professor Roderic Lakes and graduate student Zachariah Rueger have 3D printed a material that behaves in a manner consistent with the Cosserat theory of elasticity, also known as micropolar elasticity. The theory factors in the underlying substructure of a substance when analyzing its performance in a high-stress environment. Lakes and Rueger used the theory to design a polymer lattice that is about 30 times stiffer when bent than would be predicted by classical elasticity theory. The lattice consists of polymer strips arranged in a repeating crisscross design, which can increase strength and durability.

Roderic Lakes

“When you have a material with substructure in it, such as some foams, lattices and fiber-reinforced materials, there’s more freedom in it than classical elasticity theory can handle,” Lakes said. “So we’re studying the freedom of materials to behave in ways not anticipated by the standard theory.”

That material freedom opens the door to creating new materials that are immune to stress concentration, i.e. tougher than any others. Practical applications could include making airplane wings more crack-resistant. If a crack forms in an airplane wing, stress concentrates around the crack, making the wing weaker.

“You need a certain amount of stress to break something, but if there’s a crack in it, you can break it with less stress,” said Lakes.

The Cosserat theory, however, generates materials in which stress is distributed differently, making them tougher. This behavior can be seen in bone, as well as certain types of foams. When making a foam seat cushion, though, engineers don’t have much control over the foam’s substructure, so they have limited ability to tailor the Cosserat effects.

[Image: Roderic Lakes]

Lakes and Rueger, however, can tune the Cosserat effects in their 3D printed material, making it extremely strong.

“We developed a material in which we have exceptionally detailed control over the fine structure of our lattice, and that enabled us to achieve very strong effects when bending and twisting the material,” said Lakes.

Most structures, including buildings, airplanes, bridges and electronic devices are designed according to classical elasticity theory – but this new form of designing, based on Cosserat theory, could yield materials that are vastly superior. 3D printing the material gives engineers more control over its properties and structure, which could potentially lead to a new way of building, or at least of designing certain components, such as the aforementioned airplane wings.

Rueger and Lakes published their work in a paper entitled “Strong Cosserat Elasticity in a Transversely Isotropic Polymer Lattice,” which you can access here.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Source: University of Wisconsin-Madison]

 

Facebook Comments

Share this Article


Related Articles

3D Printing News Briefs: June 25, 2019

Wisconsin: Zero Barrier Labs is Trying to Make Metal 3D Printing 17 Times Cheaper



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Materialise Software Used to Optimize Conformal Cooling Tooling Design of 3D Printed Metal Mold for Toy Car

Conformal cooling channels are often used in molds, 3D printed or otherwise, to achieve more efficient cooling and higher performance levels. French toy manufacturer Smoby recently turned to Materialise for...

LLNL: Magnetically Responsive Metamaterials Instantly Stiffen 3D Printed Structures

Lawrence Livermore National Laboratory (LLNL) frequently does impressive work with 3D printing materials, including metamaterials. Now the lab has introduced a new class of metamaterial that can almost instantly respond and...

Investigating Lightweight 3D Printed Structures for Sand Casting

3D printing is often used to produce molds for casting. In the case of sand molds, binder jetting is typically used; however, its high costs, due to expensive materials, need...

Finite Element Modeling Used to Study How Defects Can Effect Porosity in 3D Printed Lattice Structures

For applications that require lightweight structures able to maintain stiffness and strength, 3D printed lattice structure are often used. The complex forms are simple to 3D print, and their mechanical...


Training


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!