Behind the Buzz: Exploring the Challenges of High-Speed 3D Printing

IMTS

Share this Article

High-speed continuous 3D printing has captured a lot of attention in recent years, and basically the method is an upgraded approach to Digital Light Processing (DLP) technology, which EnvisionTEC commercialized in 2002.

With continuous printing, light can cure photosensitive polymers without being interrupted, as the build plate constantly moves in the Z direction – this results in high-speed 3D printing, without using as many supports and many other benefits.

But this method of 3D printing also comes with some serious challenges, which is the subject of a recently published white paper on the subject, The Ultimate Guide to High-Speed 3D Printing with Continuous Technology.”

Vida cDLM

EnvisionTEC should know. The company first filed for a patent on continuous 3D printing in 2006; it was granted in 2011.

While many people know the benefits of continuous 3D printing, including speed and theoretically isotropic parts, this paper takes a deeper dive into the “dead zone” that is so critical to continuous 3D printing.

The dead zone is an area where oxygen and photopolymer commingle. Because oxygen inhibits polymerization, nothing cures in the the dead zone, which allows for 3D printing in free space right above the dead zone.

However, adding oxygen to the build area also distorts the build surface, essentially creating an air balloon at the bottom of the build tray. It’s no surprise EnvisionTEC has a patent-pending solution to this problem.

EnvisionTEC didn’t get to be a leader in the industry without having some quality 3D printers behind its name. The company boasts a variety of 3D printer models across six platforms, and works hard to make sure that all of its 3D printing solutions, from dental and orthodontics to jewelry and everything in between, are at the top of the pack.

EnvisionTEC’s new Continuous Digital Light Manufacturing (cDLM) 3D printer line comes with a new patent-pending domeless material tray that is said to deliver accuracy across the entire build area, while common continuous 3D printers only deliver high accuracy in the centermost part of the build area.

According to the white paper, “At EnvisionTEC, where continuous 3D printing has been under development for more than a decade, a patent-pending material tray was invented to correct for this dome effect and to evenly control the pressure of oxygen across the entire build tray. This ensures a flat and even dead zone and build surface for continuous 3D printing.”

The Quest for Speed in 3D Printing

We’re always looking for more speed in the 3D printing world – SLA, one of the earliest 3D printing technologies, is a fairly slow process, so when EnvisionTEC brought DLP to the market over a decade ago, the innovation, according to the white paper, “represented a significant leap in print speeds that allowed 3D printing’s first deployment in mass customized production.”

But, while it was much faster to use an HD projector to expose an entire layer of resin at a time, users still had to pause in between each exposure to peel and reposition the build platform. So the thought of continuous DLP printing in the Z axis, without having to wait after each layer, is an exciting one.

SLA (left) slowly draws a part in resin with a laser beam. DLP (right) works faster because it doesn’t have to draw every single line and can cure an entire layer in one exposure.

Benefits of continuous 3D printing include:

  • Theoretically allowing for isotropic properties by printing continuously in the Z axis
  • High-speed 3D printing lets users process chemistries that were previously not possible
  • Continuously printed parts are consistent, with a smooth surface finish and no clear weak points between layers

To learn more about continuous 3D printing, you can download EnvisionTEC’s white paper here for free.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Images: EnvisionTEC]

 

 

Share this Article


Recent News

3D Printing News Briefs, April 20, 2024: Manufacturing 4.0 Consortium, Blow Molding, & More

EOS & AMCM Join Forces with University of Wolverhampton to Establish UK Centre of Excellence for Additive Manufacturing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Sponsored

Why Corrosive Resistant Materials Are Important to the Success of 3D Printing Across Industries

The adoption of additive manufacturing (AM) is accelerating across many major industries. As this technological shift unfolds, the importance of corrosion resistance has emerged as a challenge for 3D printing...

America Makes Announces IMPACT 2.0: $6.6M in New 3D Printing Funding

America Makes, the Manufacturing Innovation Institute (MII) based in Youngstown, Ohio, has announced IMPACT (Improvement in Manufacturing Productivity via Additive Capabilities and Techno-Economic Analysis) 2.0, a project call which will...

3D Printing Webinar and Event Roundup: April 14, 2024

We’re starting off the week’s 3D printing webinars and events at ASTM AMCOE’s 11th Snapshot Workshop and MACH Exhibition. Stratasys continues its advanced training courses, SME is holding a virtual...

AMUK Welcomes Airframe Designs as British 3D Printing Industry Grows

While the UK is not the hub for 3D printer and materials manufacturers as other nations, the country continues to excel at the research, development, and application of additive manufacturing...