NIAR, SAE International Developing New Polymer 3D Printing Standards for the Aerospace Industry

Share this Article

For some time now, Wichita State University (WSU) in Kansas, and specifically its National Institute for Aviation Research (NIAR), has been working to innovate the aerospace industry by way of 3D printing technology. NIAR, the largest university aviation R&D institution in the country with nearly 20 separate laboratories, operates on a nonprofit budget and supports aviation by providing certification, training, research, and development, as well as structural testing for 3D printing materials and parts.

This week, NIAR announced that it would be helping the Polymer Additive Manufacturing (AMS AM-P) Subcommittee of global engineering organization SAE International to create new technical standard documents for polymer additive manufacturing in the aerospace industry.

David Alexander, Director of Aerospace Standards for SAE International, said, “Additive manufacturing will play a significant role in the technology needed to produce parts capable of service in critical and non-critical aerospace service. The important work done by SAE’s AMS AM-P subcommittee will help the industry move forward with this technology.”

SAE International’s AMS AM-P subcommittee, chaired by NIAR Director of Technology Development and Special Programs Paul Jonas, is actually a subcommittee itself of SAE’s Additive Manufacturing Committee (AMS-AM), and got its start after a request to help airlines use 3D printing to manufacture cabin parts was received from the International Air Transport Association (IATA).

3D printing has been used in the past to make airplane components, as well as business class seats and dividing walls, due to its ability to make lightweight and less complex parts at lower energy and cost. It’s important to set standards and regulations for aerospace 3D printing, to make sure everything goes according to plan.

“SAE’s polymer additive standardization activities complement the qualification framework under development at NIAR. Publicly available polymer additive manufacturing material and process specifications will provide the aerospace industry and regulatory authorities with documents that may be utilized by industry to purchase and process material consistently,” said Jonas.

[Image: Stratasys]

The new subcommittee’s technical standard documents will support the broader industry’s interest in qualifying 3D printed polymer parts, as well as providing quality assurance provisions and technical requirements for the material feedstock characterization and FDM process that will be used to 3D print high-quality aerospace parts with Stratasys ULTEM 9085 and ULTEM 1010.

The new technical standard documents by NIAR and SAE International’s AMS AM-P subcommittee include:

  • AMS7100 – Fused Filament Fabrication Process
  • AMS7100/1 – Fused Filament Fabrication – Stratasys Fortus 900 mc Plus with Type 1, Class 1, Grade 1, Natural Material
  • AMS7101 – Material for Fused Filament Fabrication

“SAE’s polymer additive manufacturing standardization work shows a key maturation step for the industry and will allow for users to clearly understand the critical parameters and controls that are necessary for the production of reliable, repeatable, reproducible aerospace parts. Stratasys is committed in supporting this endeavor to provide confidence to adopters of AM and advance the aerospace field,” said Chris Holshouser, Director of Specialty Solutions for Stratasys.

Chris Rempe, manager of the NIAR Additive Manufacturing Lab, uses the new metal AM system. [Image: WSU]

This past summer, the Stratasys Fortus 900mc Aircraft Interiors Certification Solution, which consists of ULTEM 9085 thermoplastic resin and specialized software for 3D printing aircraft parts, underwent a qualification at the National Center for Advanced Materials Performance (NCAMP), which is part of NIAR. This qualification occurred not long before NIAR added several new pieces of equipment, including a professional-grade metal additive manufacturing system to its Additive Manufacturing Lab.

NIAR is also working with the FAA to develop necessary methodology and procedures to have polymer additive manufacturing materials added to the National Center for Advanced Materials Performance (NCAMP) shared materials database.

What do you think of this news? Join the discussion of this and other 3D printing topics at 3DPrintBoard.com, or leave a Facebook comment below.

 

Share this Article


Recent News

Electroninks’ “World-First” Copper Ink Opens Up New Potential for 3D Printed Electronics

3DPOD 218: AM Polymers with Dr. Krysten Minnici, Arkema



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

3DPOD 217: 3D Printing Money with Danny Piper, NewCap Partners

Danny Piper, of NewCap Partners, helps companies with mergers and acquisitions, financial analysis, and more, particularly in the additive manufacturing sector. As an analyst and sparring partner for the industry,...

Featured

Printing Money Episode 21: Q2 2024 Earnings Analysis with Troy Jensen, Cantor Fitzgerald

Like sands through the hourglass, so is the Q2 2024 earnings season.  All of the publicly traded 3D printing companies have reported their financials, so it is time to welcome...

3DPOD 216: Glynn Fletcher, EOS North America President

Glynn Fletcher is the President of EOS North America. Transitioning from the machine tool world to 3D printing has given him a unique perspective compared to many others in our...

Emerging AM Technologies Analysis: Where Are They Now, Part 2

In March 2023, AM Research published the “Emerging AM Technologies Analysis: 10 Companies to Watch” report highlighting 3D printing companies with the potential to disrupt the additive manufacturing (AM) industry....