Cancer is a devastating diagnosis: no one would deny that.
Eye cancer, which according to the American Cancer Society has over 2,700 new diagnoses annually in the United States, brings about a particularly life-altering set of conditions. In order to save the patient’s life, doctors may need to perform exenteration, a surgical procedure to remove the contents of the eye socket and other afflicted tissue. This results in not only blindness, but the complete lack of an eye, which permanently alters the structure of a person’s face and directly affects their quality of life.
False eyes have been made, in varying degrees of realistic appearance, since at least the fifth century BCE, when Egyptians and Romans created painted clay attached to cloth to be worn outside the eye socket. Thus was the profession of the ocularist created. The American Society of Ocularists is an organization comprised of those who fabricate and fit custom ocular prosthetics. Around since 1957, the ASO provides information for doctors, patients, and ocularists.
False eyes have come a long way since Roman times, or the fragile glass eyes produced in 16th century Venice; today, a convincing, custom-made prosthesis can cost $10,000-$15,000. These pieces are molded, cast in rubber, and made to match the wearer’s skin color, original eye color, and even eyelashes, and they take weeks to produce. That’s a pretty long time to go without an eye.
Many health insurance plans do not cover these prostheses, leaving the family to pay out-of-pocket for the devices, deeming them unnecessary or aesthetic. While these facial prostheses do not restore sight, and thus perhaps do not contribute directly to health, they certainly add to the comfort of an individual going through daily life with one eye, and quality of life must be a consideration.
The American Academy of Ophthamology released findings at its 118th annual conference, AAO 2014 (October 18-21 in Chicago) detailing a new process for eye prosthetics. Available for patients with cancer- or congenital-caused hollow eye sockets, a new technique can offer facial prostheses created for a low cost and in only a few hours!
3D printing comes to the rescue again, proving itself valuable in another medical field. Researchers, led by Dr. David Tse with a team from the University of Miami, have developed a process utilizing topographical scanning and 3D printing technology to create a custom-made, injection-molded rubber facial prosthesis. By scanning the undamaged side of a patient’s face and mirroring the image as well as the afflicted side of the face, a topographical rendering can be created and then translated into data readable by a 3D printer.
Dr. Tse was inspired by a child he had treated, who underwent exenteration and whose family could not afford the services of an ocularist. She has since outgrown her first prosthesis, which Dr. Tse raised donations to pay for, and she is now wearing an eye patch.
“Hopefully, using this quick and less expensive 3D printing process, we can make an affordable facial prosthesis for her and also help thousands of other people like her who lack the resources to obtain one through an ocularist,” said Dr. Tse.
The 3D printed device that Dr. Tse and his team developed includes material created of a proprietary nanoparticle mix whose nanoclay particles prevent the material degradation and discoloration that are common with traditional facial prostheses. Dr. Tse’s team are based at the Composite Materials Lab at the University of Miami, but seek to make their prosthetic appliance available to patients around the world. Once up and running, the process can be as simple as pushing a button to reproduce a prosthesis that may need to be replaced, since the original design will already be saved. Reprinting the same device will maintain the integrity of design and ensure that the patient is already familiar with the same exact prosthesis.
Director of the lab and assistant professor of mechanical and aerospace engineering Dr. Landon Grace is positive about the potential of the 3D printing technology in this application.
“Once we have a patient scanned, we have the mold, so we can create a new prosthesis in no time. Our long-term goal is to help patients anywhere in the world. We could get a mobile scan, download the data in Miami, print out the prosthesis and ship it back to the patient the next day.”
With a realistic-looking prosthetic, survivors of eye cancer can bravely face the world. Using 3D printing to create the devices offers a new hope of fast prosthesis creation at only a fraction of the cost of conventional prosthetic processes. Let’s hear your thoughts on yet another incredible medical application for 3D printing in the 3D Printed Eye forum thread on 3DPB.com.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Aibuild Adds Hybrid Manufacturing Capabilities to 3D Printing Software
Nikon-backed Aibuild is startup that develops software tool for driving 3D printers. If you need a robotic arm printer designed for metal directed energy deposition (DED) or polymer extrusion, for...
EOS Expands U.S. Production with EOS M 290 Metal 3D Printer
German powder bed fusion (PBF) leader EOS has unveiled plans to expand its assembly of the popular EOS M 290 metal 3D printer at its Pflugerville, Texas facility, near Austin....
3DPOD 216: Glynn Fletcher, EOS North America President
Glynn Fletcher is the President of EOS North America. Transitioning from the machine tool world to 3D printing has given him a unique perspective compared to many others in our...
3D Printing News Briefs, September 1, 2024: Conductive Silver Ink, Egg Whites, Wood Pulp, & More
We’re taking care of business first in today’s 3D Printing News Briefs, and then moving on to news about a variety of different 3D printing materials, including egg whites. We’ll...