Rail Researchers at University of Huddersfield Explore 3D Printing of Train Components

RAPID

Share this Article

Faster than a speeding bullet train: Japan is testing a maglev (magnetic levitation) train capable of reach speeds up to 581 km/h. [Image: Getty Images]

If you went to school anywhere in the Western world, there was probably a moment in which you had to memorize the fact that the Scottish inventor James Watt developed an improved steam engine that led to the development of the steam locomotive. In reality, the engine that Watt developed was a stationary engine and could never be anything but, though it was the beginning of a chain of investigation that did eventually lead Richard Trevithick, an engineer in Cornwall, to develop the very first full-scale working railway steam locomotive in 1804.

Since then, train technology has continued to be refined and improved upon, beginning with the introduction of electric power in 1837 followed by diesel power in 1888, although diesel wasn’t a commercial success until much later. While the first trains were capable of travel at very low speeds, the 1960s saw the introduction of the famed bullet trains, or Shinkansen, that have become the trademark of Japanese rail travel. And it is in Japan that trials for the world’s fastest magnetic-leviation train led to the introduction of the possibility for travel at speeds of over 300 miles per hour.  The shift from slow and steady to super fast came about because of more than just an increase in power of the engines. Instead, complete redesign of every component from rails to cars to wheels was necessary in order to support higher speeds.

There continue to be efforts to improve rail travel, whether in terms of safety, speed, or style. While style is the part that excites those of us who want to ride on trains for the experience, the mechanics behind the train are getting some renewed attention as a result of grant programs in the EU. As part of one of those grant programs, a project called RUN2RAIL has been given a budget of €2,732,000 and has allocated four work packages to research endeavors being undertaken between universities and private enterprise. The University of Huddersfield‘s Institute of Railway Research (IRR) has received almost £300,000 worth of funding as part of the undertaking and is using those monies to investigate the possibilities for lighter, more reliable, and less noisy rolling stock.

The Institute of Railway Research’s Professor Simon Iwnicki in the Institute’s test rig [Image: University of Huddersfield]

Rolling stock is the term used to describe the vehicles that move on the railway, so the cars, engines, and other components that travel on the rails. RUN2RAIL’s  research team is exploring both new materials, such as carbon fiber, and new methods of manufacturing, such as 3D printing. The Director of the IRR, Professor Simon Iwnicki, explained their interest in carbon fiber:

“[With carbon fiber] you can have any number of curves or shapes and therefore build up the shape you actually want, whereas with a steel frame there are only a certain number of shapes you can make. Also, carbon fiber is much lighter and you can put the material just where you want it, which makes it lighter still.”

The team will be exploring the potential for advanced manufacturing in terms of components such as axle boxes and brackets for brakes. The project is currently underway and expected to wrap up by the summer of 2019.

What do you think of this news? Let us know your thoughts; join the discussion of this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Source: University of Huddersfield]

 

SaveSave

Share this Article


Recent News

3D Printing Financials: Voxeljet’s Q1 2024 Success During Market Shift from Nasdaq to OTC

New AM Research Market Brief: China to See $8B in 3D Printing Hardware Sales by 2032



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Sponsored

Creality Begins Selling HALOT-MAGE S: Setting New Standards in Precision 3D Printing

Creality, a leading innovator in consumer-grade 3D printing technology, proudly introduces the HALOT-MAGE S, the latest breakthrough in high-resolution 3D printing. With its cutting-edge features and user-centric design, the HALOT-MAGE...

Farsoon Showcases Comprehensive 3D Printing Solutions, Automation, and More at TCT Asia

This year’s TCT Asia event showcased just how much the Asian additive manufacturing (AM) market has grown, with Eplus3D’s 64-laser metal 3D printer alone acting as a synecdoche for China’s...

Sponsored

Creality Launches Ender-3 V3 Plus: Bigger CoreXZ for Unprecedented Performance

Embracing a journey of innovation and excellence, Creality’s Ender-3 series has established a distinguished path in the field of 3D printing. From the entry-level Ender-3 V3 SE to the feature-rich...

Featured

Laser Wars: Eplus3D Unveils Metal 3D Printer with up to 64 Lasers

Now that the laser wars in the powder bed fusion (PBF) space have, for the most part, moved to China, original equipment manufacturers (OEMs) there are in fierce competition. Eplus3D...