Schwarzites are named for Hermann Schwarz, the German scientist who first hypothesized their existence back in the 1880s. The structures are described as “mathematical marvels,” and have provided inspiration for many other organic and inorganic materials and constructs. Until this team decided to work on designing 3D forms from 2D surfaces and succeeded in using 3D printing as a practical means of manufacturing schwarzites, the structure was only theoretical.
The researchers used molecular dynamics simulations to investigate the structures’ bottom-up construction, and later 3D printed the simulations in polymer cube form.Additionally, schwarzites also have great deformation characteristics.Chandra Sekhar Tiwary, a Rice postdoctoral researcher, said, “The geometries of these are really complex; everything is curved, the internal surfaces have negative curvature and the morphologies are very interesting.
Schwarzite structures are very much the same. The theory shows that at the atomic scale, these materials can be very strong. It turns out that making the geometry bigger with polymer gives us a material with a high load-bearing capacity.”
“The way a material breaks is important. You don’t want things to break catastrophically; you want them to break slowly. These structures are beautiful because if you apply force to one side, they deform slowly, layer by layer,” Tiwary said. “You can make a whole building out of this material, and if something falls on it, it’s going to collapse slowly, so what’s inside will be protected.”
The researchers published the results in an article, titled “Multiscale Geometric Design Principles Applied to 3D Printed Schwarzites,” in Advanced Materials; co-authors include Seyed Mohammad Sajadi, Peter Samora Owuor, Steven Schara, Cristiano Woellner, Varlei Rodrigues, Robert Vajtai, Jun Lou, Douglas S. Galvão, Tiwary, and Pulickel M. Ajayan. The team only tested schwarzites 3D printed in primitive and gyroid structures, though they can take multiple forms, because they have periodic minimal surfaces – a quality first thought of by Schwarz himself.
Both of these 3D printed schwarzite structures were able to transfer loads across the whole geometry in tests, regardless of which side was compressed.
The results of the team’s work with 3D printed schwarzite structures could one day result in battery components, catalysts, molecular sieves, and nanoscale electronic devices; they could even become high-load-bearing, impact-resistant components on the macroscale for aircraft, automobiles, and buildings; the researchers even said that in the future, they could 3D print a whole building as a single schwarzite brick.University of Campinas professor Galvão, who uses molecular dynamics simulations to study nanostructures, said, “It is a little surprising that some atomic-scale features are preserved in the printed structures. We discussed that it would be nice if we could translate schwarzite atomic models into 3-D printed structures. After some tentatives, it worked quite well. This paper is a good example of an effective theory-experiment collaboration.”
The next step will be using 3D printers with higher resolutions to refine the surfaces of the schwarzite structures, which will make the blocks even more lightweight by reducing the amount of polymer used. Way in the future, the researchers are hoping to 3D print schwarzites on a much larger scale, with metallic and ceramic materials.
Owuor said, “There’s no reason these have to be blocks. We’re basically making perfect crystals that start with a single cell that we can replicate in all directions.”
Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.
[Sources: Nanowerk, Rice University]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
3DPOD 217: 3D Printing Money with Danny Piper, NewCap Partners
Danny Piper, of NewCap Partners, helps companies with mergers and acquisitions, financial analysis, and more, particularly in the additive manufacturing sector. As an analyst and sparring partner for the industry,...
Printing Money Episode 21: Q2 2024 Earnings Analysis with Troy Jensen, Cantor Fitzgerald
Like sands through the hourglass, so is the Q2 2024 earnings season. All of the publicly traded 3D printing companies have reported their financials, so it is time to welcome...
3DPOD 216: Glynn Fletcher, EOS North America President
Glynn Fletcher is the President of EOS North America. Transitioning from the machine tool world to 3D printing has given him a unique perspective compared to many others in our...
Emerging AM Technologies Analysis: Where Are They Now, Part 2
In March 2023, AM Research published the “Emerging AM Technologies Analysis: 10 Companies to Watch” report highlighting 3D printing companies with the potential to disrupt the additive manufacturing (AM) industry....