Arconic and Airbus Announce Cooperative Research Agreement for 3D Printed Airframe Components

Share this Article

Three years ago, lightweight metals manufacturer Alcoa announced its intention to adopt 3D printing processes, and invested millions in 2015 to expand its facilities and accelerate development. That same year, the company announced that it would be separating into two, and launched its new value-add company Arconic, with a major focus on aerospace 3D printing, in 2016, not long after Alcoa and Airbus signed a contract for 3D printed aerospace components. Since then, Arconic has signed two additional agreements with Airbus in order to supply the aerospace leader and 3D printing fan with 3D printed nickel and titanium parts, like fuselage and engine pylon components, for its A320 commercial aircraft line. The companies will continue to work together to advance metal 3D printing for aircraft manufacturing under a new multi-year, cooperative research agreement to produce and qualify large-scale 3D printed airframe components.

Eric Roegner, Executive Vice President and Group President, Arconic Engineered Products and Solutions and Arconic Defense, said, “This agreement combines the expertise of two of the world’s top aerospace additive manufacturing companies to push the boundaries of 3D printing for aircraft production. Additive manufacturing promises a world where lighter, more complex aerospace parts are produced cheaper and faster. We’re joining forces to make that potential a reality in a bigger way than ever before.”

The agreement was announced this week at formnext 2017 in Frankfurt, and combines Arconic’s metallurgy and metal additive manufacturing expertise with the design and qualification capabilities of Airbus, coupled with its experience with certification from regulatory agencies. The two will work together to develop parameters and processes for making, and qualifying, large 3D printed metal structural parts, like rib structures and pylon spars, up to 3′ in length.

The first agreements that the two companies made last year set Arconic up perfectly as an innovation partner for Airbus in the rapidly growing 3D metal printing market. Now, Arconic will put the additive and advanced manufacturing capabilities at its Ohio and Pennsylvania facilities to the test, using electron beam high deposition rate technology to 3D print parts for aircraft. This method is well-suited for 3D printing larger aerospace components due to its speed – electron beam high deposition rate technology can produce large components up to 100 times faster than other additive technologies used to make smaller parts.

Under the research agreement, Arconic will also demonstrate the many benefits of its proprietary Ampliforge process, which actually combines both additive and traditional manufacturing with advanced materials. The process works by treating a nearly finished 3D printed part with another advanced manufacturing process, like forging, to enhance the part’s existing properties. The Ampliforge process results in objects that are superior in toughness, fatigue, and strength to parts made only with 3D printing, while simplifying overall production techniques and decreasing production lead times and material input.

The partnership between Arconic and Airbus goes even further than this new agreement – Airbus announced a 3D printing breakthrough in September when it completed the installation of 3D printed titanium brackets into a series production aircraft, the A350 XWB. Now, Arconic is using the laser powder bed technologies in its Texas facility to 3D print more of these titanium brackets for Airbus.

You can visit Arconic at formnext in Frankfurt this week at booth F41 in Hall 3.0. 3DPrint.com is also at formnext, working hard to bring you all the latest news from the showroom floor. Follow us on social media to get all of the latest news and announcements.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

Share this Article


Recent News

Blueprint Launches Technology Enablement Program—Brings Greater Knowledge to 3D Printing Users

MIT: A New Fiber Ink With Electronics Embedded Inside



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

TU Delft Researchers Create Soft Robotics that Respond to Color-Based Sensors

As 3D printing and robotics continue to collide and complement each other, new machines are being created. In soft robotics, we’re seeing the emergence of a class of machines that...

MIT: Automated System Designs and 3D Prints Optimized Actuators and Displays to Spec

Actuators are complex devices that mechanically control robotic systems in response to electrical signals received. Depending on the specific application they’re used for, today’s robotic actuators have to be optimized...

Using Casting, Graphene, and SLM 3D Printing to Create Bioinspired Cilia Sensors

  What Mother Nature has already created, we humans are bound to try and recreate; case in point: biological sensors. Thanks to good old biomimicry, researchers have made their own...

Nanyang Technological University: Inkjet Printing of ZnO Micro-Sized Thin Films

In ‘Inkjet-printed ZnO thin film semiconductor for additive manufacturing of electronic devices,’ thesis student Van Thai Tran, from Nanyang Technological University, delves into the realm of fabricating products with conductive...


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!