Collaboration Key to 3D Bioprinting Stem Cell Research Success at [email protected] in Australia

Share this Article

Medical researchers and scientists have created all kinds of medical marvels, from brain tissue and cartilage to a heart and a pancreas, by 3D printing stem cells. In Australia, Swinburne University of Technology PhD candidate Lilith Caballero Aguilar is currently collaborating on a project with surgeons and researchers at [email protected], the country’s first bioengineering facility based in a hospital, about how stem cells are fed once they’re inside the body. She is working to develop methods to control the rate of release for growth factors, which stem cells need for development once they’ve been implanted, and the research could help doctors use biological 3D printing techniques to regenerate damaged or missing tissue.

Caballero Aguilar says that working alongside surgeons and other university researchers at the facility has had a major impact on her work.

“We complement each other. If I have doubt, we can discuss it and reshape the project as we go, which helps to reach a better outcome. At the end of the day, everyone is doing a bit of work in a big project. It feels very rewarding,” Caballero Aguilar said.

The facility was established through a partnership between Swinburne, St Vincent’s Hospital Melbourne, the ARC Centre of Excellence for Electromaterials Science, the University of MelbourneRMIT University, and the University of Wollongong Australia. Biology experts, surgeons, researchers, and biomedical engineers work at the facility to “pioneer innovations,” like nerves, re-engineered limbs, and tissues.

Cellink Inkredible Bioprinters [Image: Swinburne]

[email protected] has specific facilities for Molecular Biology, Materials Characterisation, Cell Culture & Bioreactors, and 3D Fabrication, which boasts 3D printer offerings like the Stratasys Objet30, the Robo R2, and the Inkredible 3D bioprinter by Cellink.

Caballero Aguilar’s stem cell work is part of two of the facility’s major research projects, one which focuses on repairing damaged muscle fibers and another regarding damaged cartilage regeneration; both are using advanced technologies, like bioprinting, to implant materials into the body, including the handheld 3D Biopen that allows surgeons to ‘draw’ biomaterials into a patient directly and has been successfully tested, using knee cartilage, on six sheep.

BioPen

She is working to manipulate polymer materials into release mechanisms for stem cell growth factors, which would form part of the 3D bioink drawn into the body. Controlling the delivery of growth factors is very important – stem cells take at least six weeks to grow into tissue, so the growth factors need to be slowly released over the entire time period. Caballero Aguilar shakes an oil and water solution at an intense rate, which is called the emulsion method, to create microspheres, which are crosslinked to form a substance that’s able to hold the growth factors.

Swinburne Professor of Biomedical Electromaterials Science Simon Moulton, who is Caballero Aguilar’s supervisor, said that the success of her stem cell research project was helped along by “the opportunity to collaborate directly with orthopaedic surgeons and muscle specialists at St Vincent’s Hospital.”

Swinburne PhD candidate Lilith Caballero Aguilar and Professor Simon Moulton in a lab at [email protected] [Image: Swinburne]

Professor Moulton said, “Without this space, Lilith’s project would be a much smaller project without the translation benefit. It still would be great research done at a very high level, she would have publications and be able to graduate, but working in this collaborative environment, she can achieve all of that, while also having her research go into a clinical outcome that actually has benefit to patients.”

Discuss in the Bioprinting Research forum at 3DPB.com.

[Source: Swinburne]

 

Share this Article


Recent News

Future Additive Market Strategies: First Quarter 2020 Financial Reports

Sustainable Cabin Built on 3D-Printed Concrete Stilts from Infested Ash Wood



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Nanyang Technological University: Processes & Materials in Large Scale Concrete Printing

Yi Wei Daniel Tay of the School of Mechanical and Aerospace Engineering at Nanyang Technological University recently submitted a thesis, ‘Large scale 3D concrete printing : process and materials properties,’...

Recycling Filaments: Evaluating the Mechanical Response of ABS in Multiple Cycles

Researchers from Greece experiment with sustainability in materials, detailing the findings of their study in the recently published ‘Sustainable Additive Manufacturing: Mechanical Response of Acrylonitrile-Butadiene-Styrene Over Multiple Recycling Processes.’ The...

3D Systems Streamlines Software for Reverse Engineering

3D Systems has announced the latest versions of its Geomagic Design X and Geomagic Wrap  software, this time claiming “first-to-market capabilities” for streamlining workflows and improving design precision. New features...

Biopolymers Used to 3D Print Large-scale Marine Fender

As discussed in our series on the role of 3D printing and polymers in (averting or contributing to) ecological collapse, biopolymers may be a crucial factor in the equation to...


Shop

View our broad assortment of in house and third party products.


Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!