Exone end to end binder jetting service

High-Performance Aluminum Alloy for Additive Manufacturing in Focus for Renishaw and Aeromet

INTAMSYS industrial 3d printing

Share this Article

Laser melting AM400 build chamber [Image: Renishaw]

Materials are increasingly in focus in additive manufacturing, with particular attention being paid to metals. As the industry well understands by now, moving a material from a traditional to an additive manufacturing process is not so simple as dropping the same type of metal powder into a different machine. Material properties must be well understood and process parameters established for any hope of success in 3D printing a viable component. Renishaw has been at the fore of many efforts to further metal 3D printing technologies, including collaborative work to advance additive manufacturing as well as work in the aerospace industry to develop, for example, next-generation aircraft wing designs and high-speed aerospace turbines. This week the company continues its efforts in metal 3D printing and aerospace, announcing a collaboration with Aeromet International focusing on a unique aluminum alloy.

The material in question, A20X, is billed as a family of next-generation high-strength aluminum alloy technologies. Aeromet and Renishaw will be working together to establish process parameters and material properties for the material, focusing on its use in additive manufacturing. The collaboration is intended to optimize the processing techniques for A20X materials on Renishaw’s 3D printers, as well as exploring heat treatment processes to further optimize properties in parts 3D printed using the aluminum-copper alloy developed by Aeromet.

Marc Saunders – Director of Global Solutions Centres [Image: Renishaw]

“Renishaw’s metal AM systems feature high power lasers, an inert processing environment and open parameters, making them ideal for supporting innovative new materials like A20X,” said Marc Saunders, Director of Global Solutions Centres at Renishaw. “We are working closely with Aeromet to qualify this exciting new alloy on our machines. Through our network of AM Solutions Centres, we can help manufacturers to develop industrial AM processes using A20X.”

In the A20X family, AM205 is a powder created for additive manufacturing, while A205 is a Metallic Materials Properties Development and Standardisation (MMPDS) approved casting alloy. According to Aeromet, A20X has “a highly refined microstructure and a unique solidification mechanism, giving it greater strength, fatigue and thermal characteristics compared to other alloys.”

The alloy debuted at the recent Paris Air Show, and the just-announced collaboration is set to drive its development further specifically for additive manufacturing. Its roots at the AM-heavy air show showcase its viability for aerospace use, among other demanding applications.

“A20X is being rapidly adopted for additive manufacture of aero engine, airframe, space, defence and automotive parts,” said Mike Bond, Director of AMT, a division of Aeromet. “Its unique combination of high strength, high ductility and performance at high operating temperatures make it ideal for light-weight, stressed components. We look forward to making processing techniques for this innovative alloy more widely available to accelerate its adoption.”

A20X has been brought into use through a contract with Boeing, and Aeromet ultimately expects that the alloy will become enough of a focus to be spun off into its own business. As Aeromet works with Renishaw to establish 3D printing parameters for the material, the companies are looking to release processing techniques and material properties to customers “in the coming months.”

The A20X powder for additive manufacturing applications was developed to offer high strength and superior flowability, allowing for the creation of complex, strong aluminum parts. While Aeromet is working now specifically with Renishaw to define 3D printing parameters, the powder was designed to be printable using “a wide range of leading additive manufacturing machines,” leaving the door open for wider use.

Among the differentiating factors of A20X (both powder and casting alloy) are, according to Aeromet:

  • Strength
  • Fatigue
  • Corrosion Resistance
  • High Temperature Performance
  • Castability
  • Flowability
  • Superplasticity

Benefits of the material, as Aeromet explains, include:

  • Cost Reduction
  • Weight Reduction
  • Thermal Performance

What do you think of this collaboration? Let us know in the Renishaw Aeromet forum thread at 3DPB.com.

Share this Article


Recent News

3D Printing News Briefs, September 21, 2021: 3D Printed COVID Test, Meatless Burgers, & More

Can Fluicell’s Bioprinted Tissue Help Treat Type 1 Diabetes?



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Webinar and Event Roundup: September 12, 2021

Buckle your seatbelts, it’s going to be a busy week of webinars and events, both virtual and in-person! RAPID + TCT and FABTECH will both be held in-person this week...

Featured

Sixth Bioprinting Acquisition in One Year from Cellink Parent Company BICO

Pioneering bioprinting firm Cellink, now part of a larger company rebranded as BICO (short for bioconvergence), has already been making quite a name for itself and is preparing to capture...

Featured

Complete Tumor 3D Printed to Facilitate Faster Treatment Prediction

There are more than 120 different types of brain tumors, many of which are cancerous, but the deadliest, and sadly most common, is the aggressive, fast-growing glioblastoma multiforme (GBM), a...

3D Printing Webinar and Event Roundup: August 15th, 2021

From convincing your professor they need a 3D printer and the future of static mixers to biomaterials and bioprinting, we’ve got another week of webinars and events to tell you...


Shop

View our broad assortment of in house and third party products.