Rice University & Baylor College of Medicine Researchers 3D Print Functional Capillaries

Share this Article

A recent paper shows that researchers are making fascinating progress in creating tissue with capillaries that have been 3D printed. While bioprinting is certainly one of the hottest areas of innovation in the scientific arena today–made possible by the concepts behind 3D printing technology–this new study and its findings show that with the initiation of a process called tubulogenesis, the scientists can create capillaries that are functioning and able to transport blood throughout a system.

This latest in bioprinting emanates from work being performed at both Rice University and Baylor College of Medicine. Bioengineers and scientists from both of these distinguished learning institutions have begun combining human endothelial and mesenchymal stem cells to make the capillaries. Their research, ‘Tubulogenesis of co-cultured human iPS-derived endothelial cells and human mesenchymal stem cells in fibrin and gelatin methacrylate gels’ was published in BioMaterials Science last month.

“We implement 3D quantification of the network character and validate that transduced and untransduced iPS-ECs can form tubules in fibrin with or without supporting hMSCs. In addition to natural fibrin gels, we also investigated tubulogenesis in GelMA, a semi-synthetic material that has received increased interest due to its ability to be photopatterned and 3D printed, and which may thus boost development of complex 3D models for regenerative medicine studies,” state the researchers in their abstract.

“Our work bolsters previous findings by validating established tubulogenic mechanisms with commercially available iPS-ECs, and we expect our findings will benefit biologic studies of vasculogenesis and will have applications in tissue engineering to pre-vascularize tissue constructs which are fabricated with advanced photopatterning and three-dimensional printing.”

From the research paper, published in BioMaterials Science.

This research is notable as the team has been able to make such progress with fragile cells that can be drawn from any patient. Not only that, with such patient-specific cells, the researchers see potential for creating tissue and replacement organs. This would allow for transplants without the risk of rejection.

“Our work has important therapeutic implications because we demonstrate utilization of human cells and the ability to live-monitor their tubulogenesis potential as they form primitive vessel networks,” said study lead author Gisele Calderon, a graduate student in Jordan Miller’s Physiologic Systems Engineering and Advanced Materials Laboratory.

“We’ve confirmed that these cells have the capacity to form capillary-like structures, both in a natural material called fibrin and in a semisynthetic material called gelatin methacrylate, or GelMA,” Calderon said. “The GelMA finding is particularly interesting because it is something we can readily 3D print for future tissue-engineering applications.”

Gisele Calderon (left) and Patricia Thai co-authored the research paper recently published in BioMaterials Science. [Image: Jeff Fitlow/Rice University]

While there has been great success in bioprinting and the creation of tissue thus far by researchers, the challenge has remained to fabricate capillaries that can supply the blood.

“Ultimately, we’d like to 3D print with living cells, a process known as 3D bioprinting, to create fully vascularized tissues for therapeutic applications,” said Jordan Miller, assistant professor of bioengineering at Rice. “To get there, we have to better understand the mechanical and physiological aspects of new blood-vessel formation and the ways that bioprinting impacts those processes. We are using 3D bioprinting to build tissues with large vessels that we can connect to pumps, and are integrating that strategy with these iPS-ECs to help us form the smallest capillaries to better nourish the new tissue.”

Tubulogenesis is a process for making capillaries that includes numerous transformations within the endothelial cells. They must form vacuoles and then connect with adjacent cells—forming endothelial-lined tubes to grow into capillaries.

“We expect our findings will benefit biological studies of vasculogenesis and will have applications in tissue engineering to prevascularize tissue constructs that are fabricated with advanced photo-patterning and three-dimensional printing,” said Mary Dickinson, the Kyle and Josephine Morrow Chair in Molecular Physiology and Biophysics at Baylor College of Medicine and adjunct professor of bioengineering at Rice.

This work was the result of dozens of experiments spanning several months. The research team eventually created a process for ‘robust’ tubulogenesis. While there is great potential for 3D printed organs in the future, this type of research may be able to help in immediate research such as drug testing.

“You could foresee using these three-dimensional, printed tissues to provide a more accurate representation of how our bodies will respond to a drug,” Miller said. “Preclinical human testing of new drugs today is done with flat two-dimensional human tissue cultures. But it is well-known that cells often behave differently in three-dimensional tissues than they do in two-dimensional cultures.

“There’s hope that testing drugs in more realistic three-dimensional cultures will lower overall drug development costs. And the potential to build tissue constructs made from a particular patient represents the ultimate test bed for personalized medicine. We could screen dozens of potential drug cocktails on this type of generated tissue sample to identify candidates that will work best for that patient.”

Discuss in the 3D Printed Capillaries forum at 3DPB.com.

[Source: Phys.Org]

 

Share this Article


Recent News

3D Printing Webinar and Virtual Event Roundup: November 29, 2020

3D Printing News Briefs, November 28, 2020: Thinking Huts, nScrypt, Alloyed, ASTM International



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Australian Navy Starts Pilot Program with Large-Format WarpSPEED Metal 3D Printer

Australian metal 3D printing company SPEE3D, based in both Darwin and Melbourne, specializes in large-format additive manufacturing, and says that its technology is the fastest and most economical metal AM...

Interview: Satori and Moroccan Designer 3D Print “Work From Home” Office Goods

London-based startup Satori, which means “enlightenment” in Japanese Zen, recently entered the 3D printing market with the launch of its new professional 3D printer, the compact, resin-based ST1600. The system,...

2020’s Inside 3D Printing Seoul Online-Offline Conference: What Was it Like?

When the SARS-CoV-2 virus hit early this year, few of us could guess the scope and scale of the resulting pandemic, and how it would disrupt every aspect of daily...

Authentise Integrating nebumind’s Digital Twin Visualization into AMES 3D Printing Software

Authentise, which offers data-driven process automation software and workflow tools for AM, announced that it is partnering with German software startup nebumind for the purposes of integrating the digital twin...


Shop

View our broad assortment of in house and third party products.