AM Investment Strategies
AMS Spring 2023

3D Printing Improves X-Ray Diffraction Experiments

Formnext

Share this Article

I was never very good at chemistry experiments in school, and now that I’ve just heard the word mechanochemistry for the first time, I’m starting to get nervous all over again, as if I’m approaching a set of beakers back in high school. But if you break it down, the concept is pretty interesting – mechanochemistry is basically an interface between mechanical engineering and chemistry. It’s the combination of mechanical and chemical phenomena on a molecular scale, and includes molecular machines and shock wave chemistry. A team of researchers with the Université catholique de Louvain (UCL) in Belgium is working on this interesting field of study, and using 3D printing technology to improve their experiment.

As mechanochemistry has spread across all areas of chemistry, it’s been able to synthesize multiple materials when what’s known as the typical ‘wet chemistry’ process isn’t working. But the downside is that the characterization of the reaction mixture is far less accessible than it is in solutions. Both X-ray diffraction and Raman spectroscopy, a technique which typically provides an identification ‘fingerprint’ for molecules in chemistry, were recently used to achieve in situ observations of mechanochemical reactions.

It’s possible to track solid-state reactions during synthesis, including material transformations and phase transitions, in what’s called a ball milling jar. But, because of scattering from its walls, as the X-rays go through the jar, the diffraction patterns offer a high background. Additionally, it’s expected that the sample will present broad diffraction peaks, due to the probing of a large sample area that covers the whole jar, and an extra complexity shows up as a result of diffraction on the milling balls. This technique has gained popularity in many of the various fields of mechanochemistry, but isn’t foolproof.

This image shows a thin-walled jar with a groove; isometric view with a cut (left) and cross section (right). [Image: UCL research team]

The researchers, with UCL’s Institute of Condensed Matter and Nanoscience, hypothesized that the issues with the diffraction could possibly be fixed, but not by changing the technique. The team decided to try modifying the material and geometry of the ball milling jar, and decided to use 3D printing technology to make the jar, as it has a complicated geometry that would be difficult to reproduce using conventional manufacturing techniques; this is especially true at the prototyping stage.

The research team recently published a paper on their efforts, titled “3D-printed jars for ball-milling experiments monitored in situ by X-ray powder diffraction,” in the Journal of Applied Crystallography; co-authors included UCL researchers Yaroslav Filinchuk; Nikolay Tumanov, also with the Department of Chemistry at Belgium’s University of Namur; Voraksmy Ban, also with the MS Group of the Swiss Light Source with the Paul Scherrer Institut in Switzerland; and Agnieszka Poulain, who is with the European Synchrotron Radiation Facility in France.

According to the abstract, “Mechanochemistry is flourishing in materials science, but a characterization of the related processes is difficult to achieve. Recently, the use of plastic jars in shaker mills has enabled in situ X-ray powder diffraction studies at high-energy beamlines. This paper describes an easy way to design and manufacture these jars by three-dimensional (3D) printing. A modified wall thickness and the use of a thin-walled sampling groove and a two-chamber design, where the milling and diffraction take place in two communicating volumes, allow for a reduced background/absorption and higher angular resolution, with the prospect for use at lower-energy beamlines. 3D-printed polylactic acid jars show good mechanical strength and they are also more resistant to solvents than jars made of polymethyl methacrylate.”

In the paper, the research team details how 3D printing was used to quickly make the ball milling jars, and optimize them to achieve improved absorption and angular resolution, and a better, less high background, for their X-ray powder diffraction experiments. As we know, 3D printing technology allows for low-cost, on-demand production of customized objects, and the UCL team’s 3D printed jars were manufactured to be more resistant to solvents, when compared to typical acrylic jars. 3D printing has been used for experiments in the growing materials science field before, and judging by the success of the UCL researchers, I’m sure other institutes will also turn to the technology for help. Discuss in the Mechanochemistry forum at 3DPB.com.

[Source: Science News]

 

Share this Article


Recent News

3D Printing News Unpeeled: General Atomics, SLA on Textile, Dyze Design

Quickparts Expands Manufacturing Capabilities with Xcentric Mold & Engineering Acquisition



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

IMTS 2022: 3D Printing Tungsten Carbide with Hyperion

At the recent IMTS 2022 in Chicago, I had the opportunity to visit the booth for Hyperion Materials & Technologies, a global materials science company that has decades of experience...

Featured

3D Printing Thought Leaders Gather for Free Online Event, AM Investment Strategies 2022

After its inaugural launch last year, AM Investment Strategies is back for its second year. The free virtual event, hosted by SmarTech Analysis and Stifel, will take place online November...

7 Ways to 3D Print without a 3D Printer

Have you ever wanted to get your hands on a 3D printer, but didn’t necessarily want to buy one? Maybe you want to try 3D printing first before investing in...

Nexa3D Enlists Quickparts and JawsTec as QLS 820 Foundational Customers

During this year’s International Manufacturing Technology Show (IMTS) in Chicago, 3D printer manufacturer Nexa3D announced the commercial availability of its new ultrafast Quantum Laser Sintering platform, the QLS 820, which...