Recent Penn State Graduate Develops New Metal 3D Printing Technology: Meet Xact Metal’s XM200
If we want to know how 3D printing technology will advance in the future, we’d do well to look to the schools and universities where students are experimenting with the technology and developing new ideas. Students like Matt Woods, a Penn State graduate who built his own 3D printer for $700 in his dorm room. His personal work with 3D printing, as well as his participation in university projects like Lunar Lion, where he 3D printed rocket components, would lead him to eventually develop a new metal 3D printing technology.
“I was enamored with the idea of a 3-D printer,” said Woods. “I had phenomenal experiences as an undergrad, getting access to University resources to print rockets with advanced alloys. It only led me to more.”
That “more” would include internships at SpaceX and CIMP-3D before graduating with an engineering degree and going on to start Xact Metal, a startup based on the technology Woods developed. In his university and internship work, Woods noted how valuable metal 3D printing is, as well as how expensive, and became determined to come up with a cost-effective version of the technology. That determination would lead to the development of the XM200, a $120,000 metal 3D printer recently introduced by Xact Metal, where Woods is Chief Technical Officer.
“Matt recognized a need, and solved for it,” says Juan Mario Gomez, CEO of Xact Metal. “His technology is changing the perception that this type of additive manufacturing is only for large, capital-rich companies.”
Woods’ patent-pending technology is a variation on typical laser-based powder 3D printing systems. Notably, it does away with the mirrors that most metal 3D printers use to redirect the laser to the entire powder bed: instead, it sends the laser directly at the powder, sintering it without the elongation of the beam, and thus inconsistent fusing of the powder, caused by the mirrors. Argon gas fills the build chamber during the build process, removing oxygen.
While small, the XM200 is quick and easy to set up and change over, and prints with both speed and precision. A few specifications include:
- Dimensions: 610 x 610 x 1295 mm (24 x 24 x 51 in)
- Build volume: 127 x 127 x 127 mm (5 x 5 x 5 in)
- Laser: 250W fiber laser
- Fusing speed: Up to 1.5 m/s with orthogonal high speed scanner
- Layer thickness: 20-100 μm
- Optics: Spot size greater than 10 microns
The XM200 can currently print with stainless steel, and several other metals are in development, including Inconel 718 Superalloy, Titanium 6Al 4V, Aluminum Si10Mg, and Maraging Steel. Cloud connectivity allows for remote monitoring of the print process from any location.
First introduced in May, the XM200 is set to begin shipping in September. It’s only the first in what will eventually be several 3D printers designed to use Woods’ technology.
“It’s been my dream to create things that don’t exist yet, to innovate, and to have the tools to do that,” said Woods. “And this technology will, in turn, give that experience to more people.”
Penn State was instrumental in the launching of Xact Metal. As a student, Woods participated in the Lion Launchpad business accelerator and Inc U student pitch competition, gathering microgrants and mentors. He received funding from the Innovation & E-Ship Fund in the Harold and Inge Marcus Department of Industrial and Manufacturing Engineering, and the company completed the Ben Franklin TechCelerator @ State College entrepreneurial boot camp in the spring of 2016. Xact Metal also applied for and received a $35,000 initial investment from Ben Franklin’s investment program and is expecting an additional $150,000 this year. The company currently operates out of Penn States’ Innovation Park.
“We feel as though we have had almost infinite resources and support from Penn State,” said Gomez. “From our proximity to one of the premier universities in the world, to the ability to recruit students, to the openness of those involved with Invent Penn State. The environment is set up to be supportive.”
Xact Metal’s development is evidence of what can happen when schools provide opportunities for education and experience in technologies like 3D printing, as well as resources for starting and growing new businesses. The XM200 is already gaining a lot of attention, for its innovative technology as well as its low price tag. Lower-cost metal 3D printing processes, such as those introduced earlier this year from Markforged with the Metal X and with Desktop Metal’s DM Studio System, are targeting price points approximating that of the XM200, as the technology continues to democratize manufacturing. You can learn more about the XM200 here.
Discuss in the Xact Metal forum at 3DPB.com.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
Print Services
You May Also Like
New Business: Temporary, Migratory, & Modular 3D Printed Architecture
If we look at potentially emerging 3D printing businesses, then architecture has not been fully explored. Yes, there is a lot of house 3D printing going on worldwide. From deployable...
3D Printing News Briefs, April 19, 2025: Material Extrusion Standard, Metal Powder, & More
In today’s 3D Printing News Briefs, we’re covering a proposed standard for material extrusion, before moving on to business and metal powder. We’ll end with a commercial store’s robotic 3D...
Japan Unveils World’s First 3D Printed Train Station
Japan is now home to what we believe is the world’s first train station built with 3D printing technology. Located in Arida City, just south of Osaka, the new Hatsushima...
restor3d Raises $38M to Expand 3D Printed Orthopedic Implants
Backed by $38 million in new funding, restor3d is pushing ahead with the launch of four personalized implant lines, set to roll out in 2025 and 2026. This latest venture...