EPlus3D

Recent Penn State Graduate Develops New Metal 3D Printing Technology: Meet Xact Metal’s XM200

Metal AM Markets

Share this Article

If we want to know how 3D printing technology will advance in the future, we’d do well to look to the schools and universities where students are experimenting with the technology and developing new ideas. Students like Matt Woods, a Penn State graduate who built his own 3D printer for $700 in his dorm room. His personal work with 3D printing, as well as his participation in university projects like Lunar Lion, where he 3D printed rocket components, would lead him to eventually develop a new metal 3D printing technology.

“I was enamored with the idea of a 3-D printer,” said Woods. “I had phenomenal experiences as an undergrad, getting access to University resources to print rockets with advanced alloys. It only led me to more.”

Matt Woods

That “more” would include internships at SpaceX and CIMP-3D before graduating with an engineering degree and going on to start Xact Metal, a startup based on the technology Woods developed. In his university and internship work, Woods noted how valuable metal 3D printing is, as well as how expensive, and became determined to come up with a cost-effective version of the technology. That determination would lead to the development of the XM200, a $120,000 metal 3D printer recently introduced by Xact Metal, where Woods is Chief Technical Officer.

“Matt recognized a need, and solved for it,” says Juan Mario Gomez, CEO of Xact Metal. “His technology is changing the perception that this type of additive manufacturing is only for large, capital-rich companies.”

Woods’ patent-pending technology is a variation on typical laser-based powder 3D printing systems. Notably, it does away with the mirrors that most metal 3D printers use to redirect the laser to the entire powder bed: instead, it sends the laser directly at the powder, sintering it without the elongation of the beam, and thus inconsistent fusing of the powder, caused by the mirrors. Argon gas fills the build chamber during the build process, removing oxygen.

While small, the XM200 is quick and easy to set up and change over, and prints with both speed and precision. A few specifications include:

  • Dimensions: 610 x 610 x 1295 mm (24 x 24 x 51 in)
  • Build volume: 127 x 127 x 127 mm (5 x 5 x 5 in)
  • Laser: 250W fiber laser
  • Fusing speed: Up to 1.5 m/s with orthogonal high speed scanner
  • Layer thickness:  20-100 μm
  • Optics: Spot size greater than 10 microns

The XM200 can currently print with stainless steel, and several other metals are in development, including Inconel 718 Superalloy, Titanium 6Al 4V, Aluminum Si10Mg, and Maraging Steel. Cloud connectivity allows for remote monitoring of the print process from any location.

First introduced in May, the XM200 is set to begin shipping in September. It’s only the first in what will eventually be several 3D printers designed to use Woods’ technology.

“It’s been my dream to create things that don’t exist yet, to innovate, and to have the tools to do that,” said Woods. “And this technology will, in turn, give that experience to more people.”

Penn State was instrumental in the launching of Xact Metal. As a student, Woods participated in the Lion Launchpad business accelerator and Inc U student pitch competition, gathering microgrants and mentors. He received funding from the Innovation & E-Ship Fund in the Harold and Inge Marcus Department of Industrial and Manufacturing Engineering, and the company completed the Ben Franklin TechCelerator @ State College entrepreneurial boot camp in the spring of 2016. Xact Metal also applied for and received a $35,000 initial investment from Ben Franklin’s investment program and is expecting an additional $150,000 this year. The company currently operates out of Penn States’ Innovation Park.

“We feel as though we have had almost infinite resources and support from Penn State,” said Gomez. “From our proximity to one of the premier universities in the world, to the ability to recruit students, to the openness of those involved with Invent Penn State. The environment is set up to be supportive.”

Xact Metal’s development is evidence of what can happen when schools provide opportunities for education and experience in technologies like 3D printing, as well as resources for starting and growing new businesses. The XM200 is already gaining a lot of attention, for its innovative technology as well as its low price tag. Lower-cost metal 3D printing processes, such as those introduced earlier this year from Markforged with the Metal X and with Desktop Metal’s DM Studio System, are targeting price points approximating that of the XM200, as the technology continues to democratize manufacturing. You can learn more about the XM200 here.

Discuss in the Xact Metal forum at 3DPB.com.

 

Share this Article


Recent News

Human Remains Could Be Identified with the Help of Forensic 3D Printing

US Air Force and Japan Building Leader Back Branch Technology’s Construction 3D Printing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Chinese 3D Printed Medicine Company Triastek Lands $20.4M in Pre-C Round

Triastek, the leader in additive manufacturing (AM) for pharmaceuticals based in Nanjing, China, has completed a Pre-C financing round worth $20.4 million dollars. Led by Guoxin International Investment, a Chinese...

3D Printing News Unpeeled: 16 & 20 lasers & Mighty Buildings Gets $52m

Farsoon Technologies and Bright Laser Technologies (BLT) both unveiled large powder bed fusion machines. Farsoon´s FS1521M has 16 fiber lasers and a 1.5 meters by 850mm Z-axis build volume. BLT´s BLT-S800...

$52M in Funding Will Push Mighty Buildings’ 3D Printed Houses into Middle East

Oakland’s Mighty Buildings, a maker of sustainable prefabricated homes produced with additive construction (AC), has received $52 million in its latest funding round. Two firms co-led the series, including Wa’ed...

US Air Force Awards $1.13M for 3D Printed Construction Retrofitting

Branch Technology, the Chattanooga-based additive construction (AC) firm, has been awarded a $1.13 million contract from the US Air Force for its proprietary Cellular Fabrication (C-Fab) technology. The Air Force...