Manufacturing Demonstration Facility’s New BAAM 3D Printer Gets a Multi-Material Upgrade

Share this Article

A few weeks ago, I had the opportunity to see a Big Area Additive Manufacturing (BAAM) machine in person. The BAAM in operation at Additive Engineering Solutions in Akron is one of only 13 in existence, and it’s an impressive machine, to say the least. That particular BAAM is brand new, but it’s already completed several big 3D prints – it has some work to do, however, if it wants to catch up with its sibling at the Department of Energy’s Manufacturing Demonstration Facility (MDF). The MDF’s BAAM earned a Guinness World Record for manufacturing the largest solid 3D printed part; it’s also 3D printed a house, some cars, a wind turbine blade mold, and much more.

Even that BAAM, however, may soon be upstaged – by another BAAM recently installed at the MDF. This new BAAM is being modified to 3D print taller objects with multiple materials. Provided by manufacturer Cincinnati Inc. under a cooperative research and development agreement, the new BAAM will have a build area of 13 x 6.5 x 8 feet, enabling taller objects than the first BAAM, which has a build area of 20 x 8 x 6 feet.

The new BAAM will also be able to 3D print with multiple polymer materials in the same object, allowing for more advanced materials research by scientists at Oak Ridge National Laboratory (ORNL), where the MDF is housed. The 3D printer will be fitted with two hoppers to allow for multiple materials, two dryers, and two lines to the extruder. According to Vlastimil Kunc, leader of ORNL’s polymer materials development team, this will give users the ability to tailor materials to different positions within a part.

“Typically, you might want to have a different set of properties on the surface of a part versus internally,” he explained. “With our current system, it is very difficult to make that transition. You might, for instance, want to switch from carbon fiber-filled thermoplastic to glass fiber-filled thermoplastic to anything in between.”

Until now, the BAAM has mostly been used to 3D print tough materials such as ABS or carbon fiber composites. With the new system, however, not only will researchers be able to 3D print with more than one material at a time, they’ll have more of an ability to experiment and to develop new materials, including biomaterials made from bamboo, poplar, flax and cellulose, in collaboration with the Department of Energy’s Bioenergy Technologies Office and BioEnergy Science Center.

“Once we have the multi-materials capability in place, it’s a completely new game,” Kunc said.

Preliminary work on the new BAAM is expected to start this summer. Over the past year, the MDF’s research has been geared mainly towards high-temperature tooling for aerospace applications, such as 3D printed autoclave tools that can withstand temperatures of 350ºF and pressures of 100 psi. This year, the focus has been more on early-stage automotive technology.

“The flexibility, versatility, and adaptability of additive manufacturing makes it possible for design engineers to push the envelope of part design,” said Carey Chen, CEO of Cincinnati Incorporated. “Large-part additive advances this new wave of manufacturing and it’s great to work with partners who are as enthusiastic about it as we are.”

In addition to the build size and the multi-material capabilities, the new BAAM will have several other improvements, including built-in electronics and controls and advanced safety systems. The 3D printer also won’t have a crossbeam at the top, allowing for taller objects and enabling users to slide parts out easily once they’re finished printing. Discuss in the BAAM forum at 3DPB.com.

[Source/Images: ORNL]

 

Share this Article


Recent News

Volta Spark’s Universal Charging Cable Prototypes 3D Printed with Zortrax

Reality or Hype: 3D Printing Improving Performance in Sports Industry?



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Argonne National Lab Tests Weather Stations with Low-Cost Sensors and 3D Printed Components

For two years right out of college, I worked as an associate producer at a local CBS affiliate, and spent a lot of time learning the ins and outs of...

LLNL Researchers Bioprint Living Aneurysm and Watch it Heal Post-Op

Cerebral aneurysms, caused by the artery walls in the brain weakening, affect roughly one in every 50 people in the US, and are distinguished by a bulging blood vessel, which...

I-nteract Allows User to Design, Feel and 3D Print Objects in Mixed Reality

Due to their general ubiquity, it may not be readily apparent just how unintuitive computers are for the process of 3D computer aided design (CAD). A mouse or trackpad along...

Smallest 3D Printed Boat Yields Possibilities for Nanotechnology

We’ve seen some big 3D printed Benchy boats before, but I bet you’ve never seen one this small! A team of researchers from Leiden University in the Netherlands have published...


Shop

View our broad assortment of in house and third party products.