ETH Zurich Researchers Develop Load-Bearing 4D Printed Structures

Share this Article

While 3D printing still seems like magic for some people, the novelty has worn off for others – but I doubt that’s true for many people regarding 4D printing. 3D printed objects that move or change shape in response to stimulus are still incredible to learn about, and the technology just keeps advancing and becoming capable of creating more complex objects.

Researchers at ETH Zurich have developed 4D printed objects that not only change their shape, but do so in a completely controlled manner that allows the researchers themselves to direct how the material reacts. The objects were developed by Kristina Shea, head of the Engineering Design and Computing Lab at ETH Zurich, and her lab.

“The flat structures we produce do not change their configuration randomly, but rather exactly in the way we design them,” explained Tian Chen, a doctoral student in Shea’s group.

The structures are also capable of bearing weight. The ETH Zurich team is the first to create these kinds of load-bearing 4D printed structures.

The researchers developed an actuating element that stimulates the 4D printed structure to either retract or extend. Those elements were then combined to create more complex structures. As the structures can only take on one of the two states – retracted or extended – at a time, the researchers could predict the structure’s stable three-dimensional form. This also allowed for structures that can take on multiple stable forms. Simulation software created by the researchers enabled them to predict the shapes the structures would take, and the stimulus that needed to be applied to get them to take those shapes.

A multi-material 3D printer was used to print the objects, which were created using two different materials: a rigid polymer that composed most of the structure, and a flexible elastic polymer that made up the moving parts. All of the parts were 3D printed in a single step.

“4D printing has several advantages,” said Shea. “Printing a flat initial form with rigid and elastic sections in a single step is highly efficient. It would be much more complex and time-consuming to produce the three-dimensional object or assemble it from separate components.”

In addition, structures can be transported in flat sheets and then expanded once they reach their destinations. Aerospace is a common application for this type of technology, but the ETH Zurich researchers are also looking into devices such as valves that open and close, or medical stents.

Currently, the researchers are manipulating the structures by hand, but they are working on a technique that will enable the objects to extend in response to temperature. They’re also looking into pneumatic tubing or swelling materials that change shape in response to humidity. The research has been published in a paper entitled “Integrated Design and Simulation of Tunable, Multi-State Structures Fabricated Monolithically with Multi-Material 3D Printing,” which you can access here. Authors include Tian Chen, Jochen Mueller and Kristina Shea. Below, you can see some of the 4D printed structures that the researchers designed:

Discuss in the ETH Zurich forum at 3DPB.com.

[Source: ETH Zurich]

 

 

Share this Article


Recent News

Modern Foundry: Analysis & Design Guidelines for 3D Printed Plastic Casts

Comparing 3D-Printed and Traditional Guide Plates for Placing Orthodontic Brackets



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

The Role of Occupational Therapists in 3D Printing & DIY Assistive Technology

Researchers from Belgium and The Netherlands offer the details of their recent study ‘Makers in Healthcare: The Role of Occupational Therapists in the Design of DIY Assistive Technology,’ exploring the...

New Frameworks for Contour-Parallel Toolpaths in FDM 3D Printing

Researchers Tim Kuipers, Eugni L. Doubrovski, Jun Wu, and Charlie C.L. Wang have released the findings of a new study in the recently published ‘A framework for adaptive width control...

PolarOnyx Researchers Use Mixed Powders and Laser 3D Printing to Make Radial Collimators

A collimator is a device that narrows a beam of particles or waves, and radial collimators can oscillate several degrees at a sample position. That’s why neutron collimators are used...

3D-Printed Bioplastics Analyzed for Material Defects & Degradation

Researchers from Poland and Spain seek more answers in the realm of materials science, releasing their findings in ‘Three-Dimensional Printed PLA and PLA/PHA Dumbbell-Shaped Specimens: Material Defects and Their Impact...


Shop

View our broad assortment of in house and third party products.


Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!