Inkbit

3D Printing May Help Make More Effective Medical Microfluidic Chips

Eplus3D

Share this Article

A microfluidic chip developed by Fluidigm.

Diagnosing genetic mutations and anomalies is a tricky science. In Dino Di Carlo’s lab at the University of California, Los Angeles, that science involves the careful preparation of microfluidic chips. These chips contain miniscule channels through which fluid samples will travel, and their preparation has to take place in a special clean room to prevent even a speck of dust from blocking one of the channels. Manufacturing them is a difficult and tedious job, but Di Carlo and his team are working to find an easier and less expensive way.

Microfluidic circuits allow scientists to maximize the results they can get from limited or expensive samples. Working with such small volumes enables multiple analyses to be conducted at the same time, and the technology also lends itself to automation, as only machines can manipulate such tiny volumes. That reduces human error, meaning that even technicians with minimal training would be able to perform testing.

It’s not that easy, though. So far, developers have focused on miniaturizing processes used to analyze DNA or RNA in blood or other bodily fluids, but using a microchip often requires those fluids to have already undergone some processing to remove components that could interfere with the reactions. The challenge, according to Jean-Louis Viovy, research director at France’s basic-research agency, the CNRS, and scientific founder of microfluidics company Fluigent, is “trying to expand the toolbox of microfluidics to be able to go from the real sample to the results, all in microfluidics.”

Dino Di Carlo

Di Carlo’s lab came up with a method for isolating circulating tumor cells, a valuable tool for cancer diagnosis. The lab uses photolithography to make microchips out of PDMS, a transparent rubber. Working in a clean room, engineers spread a liquid solution onto a circular silicon plate, and then cover the polymer with a printed black photomask that contains clear portions in the pattern of the required channels. They then expose it to ultraviolet light to cure the exposed sections, creating an inverse cast of the chip.

Liquid PDMS is then poured over the cast and baked, and a glass slide is fused to the bottom to create a prototype. Plastic copies are then ordered. That’s one way to create a 2D chip, but what about when a 3D one is required? In the past, scientists have had to stack several layers of a polymer into the photolithography molds, but 3D printing is making the process easier.

Vittorio Saggiomo, a chemist at Wageningen University, is also a 3D printing enthusiast. He 3D prints small tools for the lab, as well as fun stuff such as figurines and bird houses. Once, he accidentally left a print too long in acetone, and it dissolved. Out of that mishap came an epiphany: he could adapt that process to create microchannels. Saggiomo and his colleague, Aldrik Velders, 3D printed the shape of the channel they wanted and then suspended the printed piece in PDMS. They then soaked it in acetone overnight, which dissolved the plastic and left behind a ready-to-use microchip.

Orbits of beads in laminar microvortices formed in a microfluidic Vortex chip. [Image: Dino Di Carlo: AIP Publishing]

The method proved useful for creating microchips with complex patterns that would be difficult to create otherwise. One chip, for example, had a straight channel surrounded by a coiled one. According to Saggiomo, users could run hot or cold water through the coil in order to change the temperature of a sample.

Although standardized designs are being developed for microchips, said Di Carlo, there’s a lot of room for variety, and different designs can affect the repeatability of an experiment. His lab’s goal is to make microchips both more effective and more affordable, and while 3D printing is only one of the ways that researchers are experimenting with microchip design, it’s an effective way. Specialized 3D printers have even been designed for the production of microfluidic chips; the 3D printing of such devices is an emerging field and one that could potentially save lives by making diagnostic technology faster and more effecitve. Discuss in the 3D Printed Microfluidic Chips forum at 3DPB.com.

[Source: Nature]

 

Share this Article


Recent News

3D Printing Webinar & Event Roundup: May 28, 2023

3D Printing News Briefs, May 27, 2023: Contract, Acquisition, Movie Prop, & More



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing News Briefs, May 25, 2023: Post-Processing, Osteoarthritis, & More

We’re starting out with business in 3D Printing News Briefs today, as Exentis appointed Eric Bert the President of Exentis Americas, and 3YOURMIND announced Alexandre Donnadieu has been promoted to...

Featured

Stratasys and Desktop Metal to Merge in $1.8 Billion Deal

After US stock markets closed on Wednesday, May 25, Bloomberg reported that “people familiar with the matter” told the website that 3D printing industry pioneer Stratasys (Nasdaq: SSYS) was “in...

Zeda Opens 3D Printing Facility in Cincinnati to Serve Regulated Industries

Today, California-based Zeda, Inc. announced that it has officially opened the doors to its new 75,000-square-foot advanced manufacturing facility in Cincinnati, Ohio. The company, which rebranded to Zeda from PrinterPrezz...

Featured

US and Australia Form Clean Energy Pact as WTO Head Calls for “Reglobalized” Supply Chains

Amidst the G7 summit in Hiroshima last weekend, CNBC interviewed the Director-General of the World Trade Organization (WTO), Ngozi Okonjo-Iweala, concerning her general outlook on the current state of international...