3D Printing May Help Make More Effective Medical Microfluidic Chips

Share this Article

A microfluidic chip developed by Fluidigm.

Diagnosing genetic mutations and anomalies is a tricky science. In Dino Di Carlo’s lab at the University of California, Los Angeles, that science involves the careful preparation of microfluidic chips. These chips contain miniscule channels through which fluid samples will travel, and their preparation has to take place in a special clean room to prevent even a speck of dust from blocking one of the channels. Manufacturing them is a difficult and tedious job, but Di Carlo and his team are working to find an easier and less expensive way.

Microfluidic circuits allow scientists to maximize the results they can get from limited or expensive samples. Working with such small volumes enables multiple analyses to be conducted at the same time, and the technology also lends itself to automation, as only machines can manipulate such tiny volumes. That reduces human error, meaning that even technicians with minimal training would be able to perform testing.

It’s not that easy, though. So far, developers have focused on miniaturizing processes used to analyze DNA or RNA in blood or other bodily fluids, but using a microchip often requires those fluids to have already undergone some processing to remove components that could interfere with the reactions. The challenge, according to Jean-Louis Viovy, research director at France’s basic-research agency, the CNRS, and scientific founder of microfluidics company Fluigent, is “trying to expand the toolbox of microfluidics to be able to go from the real sample to the results, all in microfluidics.”

Dino Di Carlo

Di Carlo’s lab came up with a method for isolating circulating tumor cells, a valuable tool for cancer diagnosis. The lab uses photolithography to make microchips out of PDMS, a transparent rubber. Working in a clean room, engineers spread a liquid solution onto a circular silicon plate, and then cover the polymer with a printed black photomask that contains clear portions in the pattern of the required channels. They then expose it to ultraviolet light to cure the exposed sections, creating an inverse cast of the chip.

Liquid PDMS is then poured over the cast and baked, and a glass slide is fused to the bottom to create a prototype. Plastic copies are then ordered. That’s one way to create a 2D chip, but what about when a 3D one is required? In the past, scientists have had to stack several layers of a polymer into the photolithography molds, but 3D printing is making the process easier.

Vittorio Saggiomo, a chemist at Wageningen University, is also a 3D printing enthusiast. He 3D prints small tools for the lab, as well as fun stuff such as figurines and bird houses. Once, he accidentally left a print too long in acetone, and it dissolved. Out of that mishap came an epiphany: he could adapt that process to create microchannels. Saggiomo and his colleague, Aldrik Velders, 3D printed the shape of the channel they wanted and then suspended the printed piece in PDMS. They then soaked it in acetone overnight, which dissolved the plastic and left behind a ready-to-use microchip.

Orbits of beads in laminar microvortices formed in a microfluidic Vortex chip. [Image: Dino Di Carlo: AIP Publishing]

The method proved useful for creating microchips with complex patterns that would be difficult to create otherwise. One chip, for example, had a straight channel surrounded by a coiled one. According to Saggiomo, users could run hot or cold water through the coil in order to change the temperature of a sample.

Although standardized designs are being developed for microchips, said Di Carlo, there’s a lot of room for variety, and different designs can affect the repeatability of an experiment. His lab’s goal is to make microchips both more effective and more affordable, and while 3D printing is only one of the ways that researchers are experimenting with microchip design, it’s an effective way. Specialized 3D printers have even been designed for the production of microfluidic chips; the 3D printing of such devices is an emerging field and one that could potentially save lives by making diagnostic technology faster and more effecitve. Discuss in the 3D Printed Microfluidic Chips forum at 3DPB.com.

[Source: Nature]

 

Share this Article


Recent News

Blueprint Launches Technology Enablement Program—Brings Greater Knowledge to 3D Printing Users

MIT: A New Fiber Ink With Electronics Embedded Inside



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

TU Delft Researchers Create Soft Robotics that Respond to Color-Based Sensors

As 3D printing and robotics continue to collide and complement each other, new machines are being created. In soft robotics, we’re seeing the emergence of a class of machines that...

MIT: Automated System Designs and 3D Prints Optimized Actuators and Displays to Spec

Actuators are complex devices that mechanically control robotic systems in response to electrical signals received. Depending on the specific application they’re used for, today’s robotic actuators have to be optimized...

Using Casting, Graphene, and SLM 3D Printing to Create Bioinspired Cilia Sensors

  What Mother Nature has already created, we humans are bound to try and recreate; case in point: biological sensors. Thanks to good old biomimicry, researchers have made their own...

Nanyang Technological University: Inkjet Printing of ZnO Micro-Sized Thin Films

In ‘Inkjet-printed ZnO thin film semiconductor for additive manufacturing of electronic devices,’ thesis student Van Thai Tran, from Nanyang Technological University, delves into the realm of fabricating products with conductive...


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!