Bioprinting & Tissue Regeneration in Focus: Center for Engineering Complex Tissues Opens This Weekend Thanks to NIH Grant

IMTS

Share this Article

Even the most cutting-edge research needs an economic boost to keep going, and the National Institutes of Health (NIH) often provides this boost in the form of grants. The NIH has awarded grants to several research efforts centered around 3D printing technology, including Northeastern University’s work with 3D magnetic printing to make neonatal catheters, the University of Texas at Arlington’s materials development for 3D printed pediatric blood vessels, and 3D printed scaffolds for studying bone cancer tumors by Rice University researchers. Recently, a team of bioengineers from Rice University, Wake Forest University, and the University of Maryland received a $6.25 million grant from the NIH, which will be used to establish the Center for Engineering Complex Tissues (CECT).

[Image: John T. Consoli, University of Maryland]

Tissue engineering is also known as regenerative medicine, and works to make functional constructs that are able to maintain, improve, or fully restore organs and tissues that have been damaged. This type of medicine uses the natural healing powers of the human body as the basis for enhanced healing, and combines biodegradable templates, cells, and biologically active molecules into bioprinted scaffolds for the cells to grow into fully functioning tissues; 3D printed scaffolds are a topic we often cover here at 3DPrint.com as the technology lends itself well to creating complex and customizable bio-compatible structures.

Antonios Mikos

Rice University’s principal investigator for the five-year grant is Antonios Mikos, who was also on the research team for the university’s 3D printed scaffolds and bone cancer work. Mikos is the Louis Calder Professor of Bioengineering and Chemical and Biomolecular Engineering, the director of the Center for Excellence in Tissue Engineering, and also the director of the J.W. Cox Laboratory for Biomedical Engineering; his CECT co-investigator is David Scott, the Noah Harding Professor of Statistics.

“The CECT establishes Rice as a premier institution in tissue engineering and regenerative medicine. We have made tremendous progress alongside our colleagues at the Texas Medical Center. The CECT is a wonderful recognition of all of our collaborative efforts and presents an exciting beginning as we continue to work as a community on new technologies to improve health care,” said Mikos.

Co-principal investigators for Wake Forest’s technology research and development work for the CECT are Anthony Atala, director of the Wake Forest Institute for Regenerative Medicine and the chair of the Department of Urology at Wake Forest Baptist Medical Center, and James Yoo, professor, associate director, and chief scientific officer at the Wake Forest Institute for Regenerative Medicine.

Atala said, “We are proud to be part of this collaborative effort to advance the field of 3D bioprinting. We believe bioprinting represents one of the most promising strategies for increasing the number of patients who can benefit from replacement tissues and organs.”

CECT researchers will work with other experts across the US on six collaborative projects and six service projects. The service projects, which will be executed with teams at the University of Maryland, Emory University, Columbia University, Stanford University, Georgia Tech, Texas A&M University, and Synthasome Inc., will bring the technologies CECT is working on to broader applications and additional projects.

CECT co-principal investigator John Fisher, the Fischell Family Distinguished Professor and chair of the Fischell Department of Bioengineering at the University of Maryland, said, “CECT will become a national hub for regenerative medicine through which leading experts of all areas of bioengineering, tissue engineering and additive manufacturing can work collaboratively to advance human health. Anyone in the world will have the opportunity to reach out to us to work in our labs. In this way, CECT will foster a two-way transfer of science to spur innovations that can shape the way bone, tissue and organ defects are treated or repaired.”

Mikos explained that the collaborative projects will make for a combined, coordinated technology testing environment, where researchers can give each other feedback in order to solve various biomedical problems, which will foster the development of new and improved technology, as well as new CECT strategies. Experts at the Mayo Clinic, the University of Toronto, the University of Pittsburgh, Harvard University, and the University of Pennsylvania will work together on these collaborative projects.

“The great education opportunity the center allows is a tremendous draw for people to come here and learn about the techniques Rice is working on. By helping the community develop this expertise, we will continue to build the Advances in Tissue Engineering continuing-education course Rice has been committed to for more than 25 years,” said Mikos.

The new CECT will take tissue engineering from the laboratory to the clinic beginning April 15, and develop new technologies, while also acting as a collaborative hub for the biomaterials experts, engineers, and surgeons working on regenerative medicine. The ultimate goal is to take current 3D printing and tissue engineering technologies, and upgrade them into improved platforms for everyday use in biomedical device and regenerative medicine development, and give the millions of people suffering from pain and limited mobility due to orthopedic defects a better quality of life. In addition to the twelve collaborative and service projects, the center will also be producing tissue-engineering constructs that have transplantation capabilities. Experts at each of the CECT’s three main institutions will develop a core technology for this effort:

  • Rice University will focus on bioprinting for complex scaffold fabrication
  • Wake Forest University will concentrate on bioprinting patterns for cell-laden constructs
  • University of Maryland will work on 3D printed bioreactors for cell cultures

Mikos said, “The CECT is unique as it focuses both on the engineering of complex tissues and on the growing field of bioprinting. This grant is a great opportunity and responsibility to further develop the field and move it to the clinic.”

Discuss in the NIH forum at 3DPB.com.

[Sources: Rice University, University of Maryland]

 

Share this Article


Recent News

3D Printing News Briefs, April 20, 2024: Manufacturing 4.0 Consortium, Blow Molding, & More

EOS & AMCM Join Forces with University of Wolverhampton to Establish UK Centre of Excellence for Additive Manufacturing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Sponsored

Why Corrosive Resistant Materials Are Important to the Success of 3D Printing Across Industries

The adoption of additive manufacturing (AM) is accelerating across many major industries. As this technological shift unfolds, the importance of corrosion resistance has emerged as a challenge for 3D printing...

America Makes Announces IMPACT 2.0: $6.6M in New 3D Printing Funding

America Makes, the Manufacturing Innovation Institute (MII) based in Youngstown, Ohio, has announced IMPACT (Improvement in Manufacturing Productivity via Additive Capabilities and Techno-Economic Analysis) 2.0, a project call which will...

3D Printing Webinar and Event Roundup: April 14, 2024

We’re starting off the week’s 3D printing webinars and events at ASTM AMCOE’s 11th Snapshot Workshop and MACH Exhibition. Stratasys continues its advanced training courses, SME is holding a virtual...

AMUK Welcomes Airframe Designs as British 3D Printing Industry Grows

While the UK is not the hub for 3D printer and materials manufacturers as other nations, the country continues to excel at the research, development, and application of additive manufacturing...