Scientists and researchers from ETH Zurich and IBM Research Zurich have built an extremely small redox flow battery – it’s only around 1.5mm thick, and can potentially provide energy to tightly packed electronic components, while at the same time dissipating the heat that’s produced by these components. Redox means reduction-oxidation, and the redox flow battery is rechargeable, thanks to two chemical components that are dissolved in liquids that are contained inside the battery system, and separated by a thin membrane. 3D printing technology was used to keep the batteries efficiently supplied with electrolytes.
Conventional batteries store energy in two fixed electrodes, but flow batteries store it in two liquid electrolytes, and it’s pumped into the battery through two circuits. Electrochemical reactions convert a battery’s energy from its stored chemical form into electricity. Flow batteries can convert chemical energy into electrical energy and vice versa, but fuel cells can only convert one direction, chemical into electrical, and not both. Flow batteries are also lighter than regular batteries – while regular batteries are heavier depending on how much energy, or fuel, is stored inside, flow batteries can get fuel from outside and don’t have to store it. The only problem is that flow batteries need a liquid supply system.
The work by IBM Research Zurich and ETH Zurich, the latter of which introduced a method for metal 3D printing on a nano level last year, was outlined in a research paper, titled “3D-printed fluidic networks for high-power-density heat-managing miniaturized redox flow batteries,” and published in Energy & Environmental Science; co-authors on the paper were Lorenz Brenner, Neil Ebejer, Julian Marschewski, Bruno Michel, Dimos Poulikakos, and Patrick Ruch. The tiny redox flow battery that the researchers constructed means that future computer chip stacks could not only receive electrical power, but also be cooled at the same time – basically, an electrochemical reaction produces electricity using two liquid electrolytes, “pumped to the battery cell from outside via a closed electrolyte loop.”
Poulikakos, Professor of Thermodynamics at ETH Zurich, said, “The chips are effectively operated with a liquid fuel and produce their own electricity.”
![Three-dimensional chip stacks could be used in computers in the future. Integrated microscale flow batteries could both power and cool them. [Image: IBM Research Zurich]](https://editorial.3dprint.com/wp-content/uploads/2017/03/Three-dimensional-chip-stack.png)
Three-dimensional chip stacks could be used in computers in the future. Integrated microscale flow batteries could both power and cool them. [Image: IBM Research Zurich]
ETH Zurich doctoral student Marschewski said, “We are the first scientists to build such a small flow battery so as to combine energy supply and cooling.”

3D-printed polymer channel walls (raised). The liquid electrolyte flows in the recesses. The enlarged image shows a 3 x 4 millimetre section. [Image: Marschewski et al. Energy and Environmental Science 2017]
According to the paper’s abstract, “The miniaturization of redox flow cells (RFCs) paves the way to novel energy conversion concepts combining power delivery and heat regulation. Envisioning the integration of high-power-density RFCs into electronic devices such as microprocessors, lasers, or light-emitting diodes for the purpose of providing power and heat management simultaneously, we introduce and investigate interdigitated, tapered multiple-pass microfluidic networks in miniaturized flow cells. Employing 3D-printing for the facile and inexpensive fabrication of these networks, we demonstrated RFCs with maximum power densitites of up to 1.4 W cm−2 at room temperature and net powder densities of up to 0.99 W cm−2 after subtracting pumping power losses. The electrolytes employed modest concentrations of 0.4 M K4Fe(CN)6 and 0.2 M2,6- dihydroxyanthraquinone in alkaline electrolyte. We thereby show that rational tailoring of fluidic networks in RFCs is key for the development of devices effectively combining power delivery and thermal management.”
The researchers explained that the most important obstacle they had to surmount while building the micro-flow batteries was to work out a method to keep them efficiently supplied with electrolytes, while also maintaining a low pumping power. The battery’s electrochemical reactions happen in two thin, porous electrode layers that, as previously mentioned, are kept separate thanks to a membrane. The research team built a polymer channel system, thanks to 3D printing technology, to efficiently press the electrolyte liquid into the porous electrode layer. Wedge-shaped convergent channels were deemed to be the most effective design.

The channel networks ensure that the liquid electrolytes fully penetrate the porous electrodes and react electrochemically. [Image: Marschewski et al. Energy and Environmental Science 2017, adapted]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
U.S. Military Innovation Pushed to the Frontlines with Advanced Manufacturing
Since at least World War One, the U.S. military has been the principle driver of American technological innovation. This is such a well-worn narrative by now — subsuming the origins...
3D Printing News Unpeeled: Sweat Collectors, Blue Lasers & Testing for Concrete 3D Printing
Today we learn of a project between GE Additive and Nuburu to implement blue lasers on powder bed fusion machines presumably for copper and aluminum. Also, a DLP 3D printed...
3D Printing News Unpeeled: Thing Memberships, Formwork and Deutsche Bahn
Both Thangs and Prusa Research-owned Printables announced memberships for exclusive models to support their platforms and creators. This could greatly encourage new open source creations, or it could reduce the...
US Army Tasks Senvol to Research Metal 3D Printing Repeatability
One of the biggest issues in industrial additive manufacturing (AM) is differences between print jobs, parts in the same build, and on from one machine to the next, even if...
Print Services
Upload your 3D Models and get them printed quickly and efficiently.