McGill University Researchers Use 3D Printing to Develop Bio-Inspired Interlocking Sutures
Researchers and professors at McGill University in Canada have worked with 3D printing a number of times, using the technology to 3D print better hip replacements, and even more absurd-sounding items, like building a 3D printed tiger out of ice and a 3D printed statue of Canada’s 7th Prime Minister out of polyurethane foam and shaving cream. Recently, a research team with the university’s Department of Mechanical Engineering used modeling, optimization, and 3D printing to develop bio-inspired interlocking sutures.
According to the paper’s abstract, “Structural biological materials such as bone, teeth or mollusk shells draw their remarkable performance from a sophisticated interplay of architectures and weak interfaces. Pushed to the extreme, this concept leads to sutured materials, which contain thin lines with complex geometries. Sutured materials are prominent in nature, and have recently served as bioinspiration for toughened ceramics and glasses. Sutures can generate large deformations, toughness and damping in otherwise all brittle systems and materials. In this study we examine the design and optimization of sutures with a jigsaw puzzle-like geometry, focusing on the non linear traction behavior generated by the frictional pullout of the jigsaw tabs. We present analytical models which accurately predict the entire pullout response.”
Geometric interlocking is very important in the adhesion and cohesion of both structures and materials; examples include fiber-reinforced composites, engineering, and adhesive science. This phenomenon is definitely present in nature, and is critical in tough biological materials, like bone, because it actually generates “toughness” and dissipates energy in materials that are normally brittle. Architectured materials based on this kind of bio-inspired interlocking have recently presented some attractive and unique combinations of properties; in the McGill study, the team introduced a new type of sutured material that combines architecture, bioinspiration, and geometric interlocking, while also exploring the sutures’ multi-stability, involving sliding and interlocking between two distinct, stable states.
Using a non-Hertzian contact solution problem, the researchers worked out a solution to determine the maximum stress and pullout response in the interlocking materials; geometrical parameter and friction coefficient are used to tune the material response, and they learned that as the coefficient and interlocking angle increase, so too does the material’s resistance to pull out of the suture interface. In order to verify this pullout response, the researchers used mechanical testing and 3D printing, which ultimately showed that in order to optimize the stiffness, energy absorption, and maximum strength of the materials, it’s better to use a lower friction coefficient, with a higher locking angle.

Fig. 3. A bistable interlocked material (BIM); (a) Geometry of the tensile test sample with multiple interlocked sutures; (b) A typical tensile stress–strain curve (here with θ 1 = 15° and R 1 /R 2 = 1.05) showing a plateau-like region corresponding to the transformation of the sutures. (c) In-situ images showing different stages of loading and progressive transformation of tabs to their second stable configuration. All the potential sites have transitioned to the second stable position (stage E) prior to complete failure (stage F). [Image: ResearchGate]
The abstract concluded, “The models and guidelines we present here can be extended to other types of geometries and sutured materials subjected to other loading/boundary conditions. The nonlinear response of sutures are particularly attractive to augment the properties and functionalities of inherently brittle materials such as ceramics and glasses.”
The research team determined that mechanisms typically associated with geometric interlocking and sutures, which are commonplace in natural structured materials, have a high engineering potential, which has not yet been fully exploited. Discuss in the Interlocking Sutures forum at 3DPB.com.
[Sources: Journal of the Mechanics and Physics of Solids, ResearchGate]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
3D Printing Financials: Stratasys Ends 2024 with Cost Cuts and Growth Plans
Stratasys (Nasdaq: SSYS) has wrapped up 2024 with stronger margins but a full-year net loss. The polymer 3D printing leader navigated a year of economic headwinds, restructuring efforts, and shifting...
3D Printing Financials: AML3D and Titomic Bet Big on U.S. Growth
Australia’s leading metal 3D printing companies, AML3D and Titomic, are expanding fast, but their financial results show different paths. AML3D (ASX: AL3) delivered a 206% revenue increase, crossing the AUD...
Sintavia Buys AMCM Metal 3D Printer with nLight Lasers
Additive manufacturing (AM) service specialist Sintavia recently received a $10 million investment and is already putting the funds to use. The company has purchased a twin-laser AMCM M290-2, equipped with...
Billion Dollar Bambu and a New Worldview?
Imagine for a moment that Bambu Lab sells 2.7 million 3D printers this year. If their average ticket price is $350 and they generate $75 million in filament sales, their...