Xometry Offers a Quick Guide to Choosing the Right Additive Materials

IMTS

Share this Article

Additive manufacturing is an effective way to produce both prototype and production parts, often at a fraction of the price and much faster than traditional manufacturing processes. 

3d-printed-part-cropped

Xometry’s advanced manufacturing platform provides a streamlined way for engineers and designers to get instant pricing, lead times and manufacturability feedback. All it takes is a 3D CAD file. 

xometry-material-samples_720

Browse Surface Finish Photo Gallery for 3D Printed Parts

Xometry uses industrial 3D printing technologies to manufacture custom parts. Unlike the household desktop machines, industrial printers often cost hundreds of thousands of dollars. So what’s the difference?

Director of Project Engineering, Greg Paulsen, says “Consistency and reliability are essential for our customers. I can build one part in a process like FDM, then weeks later the customer can be assured that if they ordered a dozen more they would get the same product they expected.”

Industrial machines are tuned, regularly maintained, and run with standardized materials with reliable material properties. That does not mean that choices are limited though. Industrial 3D printing offers many materials and processes to fit different jobs. Here are few of the most popular additive materials and their common applications:

Nylon – Selective Laser Sintering (SLS) 

xometry-logo-colorXometry calls SLS nylon the 80% material, meaning 80% of the time you will probably be prototyping with this method! SLS builds parts in a heated powder bed where a laser etches the part’s profile, building layer by layer. Nylon itself is heat and chemical resistant and has end-use durability for engineered applications. Recommended build size is up to about a foot, although you can build larger, and since there is no need for support structures the process handles complex parts with ease. Finishes are limited to dyeing in select colors and media tumbling. If you need something mechanically stiff and lightweight you may want to consider the nickel plating option as well! 

ABS & ASA – Fused Deposition Modeling (FDM) 

Is your part mechanically oriented with walls over 2mm thick? No snap tabs? If that is the case then choosing Fused Deposition Modeling (FDM) could be your go-to material. FDM builds parts by extruding a melted filament which zig-zags back and forth to form the shape of the part. The most common materials are ABS or ASA, which have very similar properties as a general use plastic. The materials allow for a variety of colors as well as a very large build volume to large parts up to 3 feet or production runs of smaller parts. There is even a static dissipative material called ABS-ESD7 which is useful for production jigs.

ULTEM 9085 & 1010 – Fused Deposition Modeling (FDM) 

Moving to more advanced materials for tough environments, FDM ULTEM is designed to withstand over 400°F in temperature and is a very strong thermoplastic option for 3D printing. Usually this material is used as part of a manifold or system that is near engine heat. Due to the material’s fire resistance it is also an ideal option for battery housings, robotics, and drone bodies.

Aluminum Alloy – Direct Metal Laser Sintering (DMLS) 

Sometimes the part just needs to be metal. Direct Metal Laser Sintering (DMLS) makes parts by melting a powder bed of metal, layer-by-layer, to build a metal geometry from CAD. This is a great way to get a complex part, or something that would eventually be milled from a casting, without major setup and tooling fees. Although Xometry 3D prints several metals, Aluminum has become a favorite because it is lightweight and can be post processed via drilling or tapping. DMLS may also be much more economical upfront than traditional milling if the geometry is complex.

For more information on 3D printing materials and finishes, and to consult with Xometry’s team of expert engineers, visit www.xometry.com. Discuss in the Xometry forum at 3DPB.com.

xometry-homepage

 

Share this Article


Recent News

Solidscape Sold to Investor by Prodways

3D Printing Unpeeled: BMF 510(k) & SprintRay Midas



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Precision at the Microscale: UK Researchers Advance Medical Devices with BMF’s 3D Printing Tech

University of Nottingham researchers are using Boston Micro Fabrication‘s (BMF) 3D printing technology to develop medical devices that improve compatibility with human tissue. Funded by a UK grant, this project...

3D Printing Webinar and Event Roundup: April 21, 2024

It’s another busy week of webinars and events, starting with Hannover Messe in Germany and continuing with Metalcasting Congress, Chinaplas, TechBlick’s Innovation Festival, and more. Stratasys continues its advanced training...

3D Printing Webinar and Event Roundup: March 17, 2024

It’s another busy week of webinars and events, including SALMED 2024 and AM Forum in Berlin. Stratasys continues its in-person training and is offering two webinars, ASTM is holding a...

3D Printed Micro Antenna is 15% Smaller and 6X Lighter

Horizon Microtechnologies has achieved success in creating a high-frequency D-Band horn antenna through micro 3D printing. However, this achievement did not rely solely on 3D printing; it involved a combination...