3D Printed Biodegradable Metal Bone Scaffolding Created

IMTS

Share this Article

We have already seen some amazing developments from the medical world with the help of 3D printing technologies. We have seen living cells, complete sheets of human tissue, and all sorts of human and animal iron-2prosthetic devices being 3D printed by researchers around the world.

Today we got word of another way in which 3D printing is creeping its way into the medical community. Researchers at the University of Pittsburgh Swanson School of Engineering and McGowan Institute for Regenerative Medicine (MIRM), have created a biodegradable metal scaffolding which can be used to grow bone cells onto.

The bone scaffolding is 3d printed out of iron and manganese, and biodegrades over time within the body. This allows doctors to insert the scaffolding where ever it needs to be placed, and when the bone has formed in the correct area, the scaffolding slowly erodes harmlessly. The new iron-manganese material corrodes much quicker than that of pure iron, and also the tensile mechanical properties of the material are much closer to that of a human bone. The material has been shown to be ideal for bone growth, as it has an open porosity of 36.3%, permitting bones to grow almost perfectly.

The team of researchers signed an 18 month contract worth $590,000 with corporate partners, ExOne, Hoeganaes, and Magnesium Elektron. The project is the work of iron-1Howard Kuhn, Prashant Kumta, and Patrick Cantini.

“Thanks to computer-aided tomography, or CAT scans, we can directly image a damaged structure like a bone or trachea and construct a biodegradable iron-manganese based scaffold to promote natural tissue growth during the healing process,” Kumta says. “This reduces the risk of disease transmission via methods such as bone grafting, and allows for a more precise framework for the body to heal itself by controlling the degradability of the alloy by careful alloy design and engineering.”

Through laser sintering technology, the metal scaffolding is able to be printed with high accuracy.  Researchers envision this technology ultimately being used for all sorts of tissue scaffolding within the human body, from bones to wind pipes. Discuss the 3D printing of bones at 3DPrintBoard.

 

Share this Article


Recent News

How Desktop 3D Printing Can Help Your Small Business

Spare Parts 3D’s New Software Converts 2D Drawings into 3D Models



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Know Your Würth: CEO AJ Strandquist on How Würth Additive Can Change 3D Printing

AJ Strandquist is a different kind of additive manufacturing (AM) CEO. He’d be far more at home walking around a shop floor than he would be sitting in the boardroom...

2025 Renault 5 E-Tech Electric Is Latest Car with 3D Printed Accessories 

Due to the required numbers, additive manufacturing (AM) has struggled to make significant inroads into vehicle interiors in meaningful numbers—at least as far as public knowledge is concerned. Typically an...

3D Printed Spare Parts Come to Brazil via New Partnership

In a new development for the adoption of additive manufacturing (AM) for spare parts, SENAI CIMATEC, a prominent Brazilian technology institution, and French start-up SPARE PARTS 3D have announced a...

3D Printing’s Journey to a New Industrial Reality

In the world of 3D printing, we stand to witness a revolution unfold before our eyes. As the saying goes, “There’s a time and place for everything,” and for 3D...