Additive Manufacturing Strategies

3D Printed Biodegradable Metal Bone Scaffolding Created

ST Medical Devices

Share this Article

We have already seen some amazing developments from the medical world with the help of 3D printing technologies. We have seen living cells, complete sheets of human tissue, and all sorts of human and animal iron-2prosthetic devices being 3D printed by researchers around the world.

Today we got word of another way in which 3D printing is creeping its way into the medical community. Researchers at the University of Pittsburgh Swanson School of Engineering and McGowan Institute for Regenerative Medicine (MIRM), have created a biodegradable metal scaffolding which can be used to grow bone cells onto.

The bone scaffolding is 3d printed out of iron and manganese, and biodegrades over time within the body. This allows doctors to insert the scaffolding where ever it needs to be placed, and when the bone has formed in the correct area, the scaffolding slowly erodes harmlessly. The new iron-manganese material corrodes much quicker than that of pure iron, and also the tensile mechanical properties of the material are much closer to that of a human bone. The material has been shown to be ideal for bone growth, as it has an open porosity of 36.3%, permitting bones to grow almost perfectly.

The team of researchers signed an 18 month contract worth $590,000 with corporate partners, ExOne, Hoeganaes, and Magnesium Elektron. The project is the work of iron-1Howard Kuhn, Prashant Kumta, and Patrick Cantini.

“Thanks to computer-aided tomography, or CAT scans, we can directly image a damaged structure like a bone or trachea and construct a biodegradable iron-manganese based scaffold to promote natural tissue growth during the healing process,” Kumta says. “This reduces the risk of disease transmission via methods such as bone grafting, and allows for a more precise framework for the body to heal itself by controlling the degradability of the alloy by careful alloy design and engineering.”

Through laser sintering technology, the metal scaffolding is able to be printed with high accuracy.  Researchers envision this technology ultimately being used for all sorts of tissue scaffolding within the human body, from bones to wind pipes. Discuss the 3D printing of bones at 3DPrintBoard.

 

Share this Article


Recent News

FDM 3D Printing Support Removal Times Cut in Half with VORSA 500

3D Printing Drone Swarms, Part 12: 3D Printing Missiles



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

ICAM 2021: Keynotes on 3D Printing in Healthcare & Aerospace

At last month’s International Conference on Additive Manufacturing (ICAM) 2021 in Anaheim, California, hosted by ASTM International’s Additive Manufacturing Center of Excellence (AMCOE), a wide variety of topics were covered,...

Featured

3D Printing Unicorns: Gelato Gets $240M in Funding, Expands into 3D Printing

On-demand printing platform Gelato, based in Oslo, Norway, achieved the coveted unicorn status after a new funding round. On August 16, 2021, the company announced it had raised $240 million...

Featured

US Army and Raytheon to Use 3D Systems Metal 3D Printing to Heat-Optimize Munitions

3D Systems (NYSE: DDD) has been chosen by defense contractor Raytheon and the U.S. Army’s central laboratory to help with a design optimization project. To do that, the 3D Systems’...

Raytheon Receives Funding for Aerospace 3D Printing of Optical Components

This spring, Ohio-based America Makes, the leading collaborative partner in additive technology research, discovery, and innovation for the US, announced its latest Project Call for AXIOM, or  Additive for eXtreme Improvement...


Shop

View our broad assortment of in house and third party products.