VCST Looks to LCV for Help with Prototypes of Automotive Gearboxes Using Laser Cladding in 3D Printing

Share this Article

lcv-logoMetal 3D printing is on the rise throughout the industry, and some of that is thanks to hybrid manufacturing methods, like laser cladding. This is a complex process where material, in the form of powder or wire, is fused at the height of a substrate, and the laser acts as a heat source to create a melt pool. The applied layer is metallurgically bonded to the underlying material. The technique has been used in all kinds of innovative solutions, such as a powder nozzle that can help protect sensors, and last year, Hybrid Manufacturing Technologies won a prestigious 3D printing award for its AMBIT tool-changeable laser cladding head. Global automotive OEM precision powertrain and brake component supplier VCST is working on a new concept for automotive gearboxes, and has turned to Belgium-based specialist Laser Cladding Venture (LCV) and 3D printing to keep time to market on the lower end of the scale.

vsct-logoVCST has manufacturing operations in six countries. Their Sint-Truiden, Belgium office contacted LCV for assistance in manufacturing the gears for the company’s prototypes of automotive gearboxes. In order to function at the top of the pack, manufacturing prototypes need to be strong, and not so expensive that they’ll break the bank. As previously mentioned, laser cladding is moving up in the world of additive manufacturing; due to its wear protection and repair, the technology lends itself well to 3D printing. One of the big advantages of 3D printing through laser cladding is the mechanical integrity of the parts.

laser-cladding-3d-printing-gears-for-automotive-gear-box-conceptLCV offers laser cladding as a service, and additionally helps their customers in optimizing products, and manufacturing them right in their workshop. They select the proper coating for whatever they are laser cladding, in order to make the pieces more corrosion-proof and wear-resistant. LCV prints parts with dimensions that are up to three meters, at high build rates, which enables laser cladding to be a viable alternative for manufacturing metal prototypes. According to the website, their laser cladding capabilities support and facilitate the circular economy:

  • 3d-printing-gears-thru-laser-claddingThe laser cladding process is material and energy efficient. Since it’s an additive technique, there is no loss of material. LCV also has recycling technology for regeneration of the powder they use.
  • End-users rely on LCV for repair of critical components, so they are able to give a second life to items that would otherwise be lost.
  • On a product level, LCV protects components against wear, resulting in significant life extension. For example, extrusion dies protected with LCV-CorroSlide have a 15-fold increase of lifespan.
  • LCV supports the recycling industry by protecting crushers and grinders.

Tracks of molten metal are applied to a base plate, or substrate, when 3D printing by way of laser cladding. The tracks are then deposited in layers by using a laser to melt a powder, supplied either co-axially or laterally. Design solutions can be even more flexible, as LCV does not utilize the powder-bed principle found in SLM printing due to its use of multi-axis laser nozzles and substrate clamps.

laser-cladding-processLCV delivered AE10424 gears on a cylindrical substrate, and used milling to post-process them. They also printed graded materials of the wear-resistant X42Cr13 on a tough CrMo alloy. The single-material parts built by laser “are tested on contact wear (25 million cycles at 1200 MPa) and fatigue (1 million cycles at 650 MPa).” Under a dynamic load, the laser cladded 3D printed gears had a high performance level. According to the LCV website, 3D printing with laser cladding “fits into the new era of manufacturing, based on the sustainable use of resources and materials.”

To learn more about the capabilities, applications, and benefits of laser cladding, watch LCV’s video:

Discuss in the Laser Cladding forum at 3DPB.com.

Share this Article


Recent News

nScrypt 3Dx-700 System Goes Beyond 3D Printing for Digital Manufacturing

BASF and CTIBiotech Develop 3D Bioprinted Human Reconstructed Skin



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Poietis: Bioprinting With Their Innovative Laser-Assisted Technology

In 2014, French startup Poietis developed a unique technology for the bioprinting of living tissue. Unlike conventional approaches to tissue engineering or extrusion bioprinting, their promising 4D laser-assisted system allows cells...

Creating Vascular Structures Using Low Cost Desktop 3D Printers

In a thesis entitled “Engineering of vascular networks within biocompatible hydrogels using 3D printing technology,” a PhD student named Juan Liu discusses the need for new technologies in wound healing....

3d.fab’s BioAssemblyBot Wants to 3D Print Skin onto People

3D bioprinting continues to diversify as more and more companies and research organizations join the field, each bringing their own take on the technology to the table. French collaborative platform 3d.fab has...

3D Printing for Diagnosing and Treating Cancer and R&D Tax Credits

Cancer research has evolved with the help of 3D printing. Doctors can create patient-specific 3D models of cancerous body parts to prepare for upcoming surgeries. Medical engineers can create digital...


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!