OR Lasertechnologie Develops Additive Manufacturing Method to Protect Sensitive Sensors

Share this Article

orlaser_logoThe thing about sensors is that they’re sensitive. Obviously, they need to be, as their name and purpose suggest, and generally, the more sensitive a sensor is, the more effective it is. Unfortunately, sensors often aren’t the most durable bits of equipment, and thus need to be frequently repaired or replaced, particularly in heavy industrial applications. But a new type of additive manufacturing technology developed by German company OR Lasertechnologie may be the solution to sensor stress, saving companies valuable time, money and materials.

The 3D printing of sensors is a new and intriguing area of additive manufacturing, with nanotechnology and advanced 3D printing methods leading to breakthroughs such as microscopic sensors that can be printed directly onto components. OR Lasertechnologie’s research has led them to use 3D printing as a method not to create sensors, but to protect them.

As an example of the level of stress some industrial sensors are subject to, take a look at oil and gas pipelines. Every day, roughly one million barrels of crude oil are pumped through a single pipeline about one meter in diameter. That’s a lot of oil, and a lot of pressure, and the sensors used to monitor that pressure, along with temperatures and flow rates, are required to work extremely hard. The internal pressure, which can reach up to 100 bars in onshore pipelines and over 200 bars in offshore pipelines, leads to abrasion and corrosion of the sensors, making them wear out quickly.

AM_OR_App_Powder_Noz_2

A common method of protecting these sensors is coating them with Kennametal’s Stellite, a cobalt-chromium alloy designed to resist wear. The technique isn’t without its drawbacks, though – intense heat is produced when machining the substance onto the sensors, often causing the Stellite and the sensor material to melt together, resulting in a shorter lifespan for the sensor yet again. OR Lasertechnologie, however, believes that they’ve come up with a way to protectively coat the sensors without compromising them, courtesy of additive manufacturing.

Schematische_Darstellung_Pulverduese_IV_01The system centers around a newly developed powder nozzle that allows OR Lasertechnologie to apply Stellite to sensors through direct metal deposition (DMD), using a low-powered laser to melt the Stellite onto the sensor with minimal melting of the sensor itself. The metallic powder is fed coaxially to the laser beam and fused with the surface of the sensor in a precise process that allows adhesion to take place only at a few scattered points on the sensor, rather than the entire surface – again, minimizing melting.

The procedure is carried out in an argon chamber to prevent oxidation and the formation of tiny bubbles in the material. The result is a sensor coated in a smooth, protective surface without cracks or pores, greatly extending the life of the sensor without affecting it adversely. It’s a much more flexible procedure, too – the coaxial configuration allows powder to be deposited regardless of the direction of the substrate’s movement, meaning that it can grow in any direction.

The technology was developed over the course of a year by OR Lasertechnologie’s research and development department, working together with the Fraunhofer Institute.

AM_OR_App_Pow_Noz_1

“We’re proud of having found a way to increase the durability of these sensors with our additive laser technique and thus improve the reliability of gas and oil pipelines,” said Markus Wolf, head of the R&D department at OR Lasertechnologie.

The nozzle is the first of its kind to combine wire- and powder-based laser cladding applications, making it 10 times more effective than prior cladding processes. It’s compatible with OR Lasertechnologie’s sophisticated EVO Mobile laser welding system and can be controlled with the company’s ORLAS SUITE software. Discuss further in the AM Technology to Solve Industrial Sensor Stress forum over at 3DPB.com.

Share this Article


Recent News

Markforged SPAC: Metal 3D Printing Enters New Era

Push Button Metal: The Low-Cost Metal 3D Printing Evolution We’re Not Talking About



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Phillips Corporation Becomes Markforged 3D Printer Distributor

On the heels of the big news of its upcoming merger and IPO, Markforged has announced that Phillips Corporation will be adding the startup’s 3D printing technology to its portfolio...

New 3D Printing Industry Leaders Join AMGTA

The Additive Manufacturer Green Trade Association (AMGTA) welcomed eight new member organizations adding to its list of 12 additive manufacturing (AM) companies aligned with the organization’s commitment to promoting the...

Featured

3D Printing Startup Markforged to Go Public via SPAC Merger

Markforged, a leader in industrial 3D printing, prepares to go public after a merger deal with blank-check company one (NYSE: AONE), a $200 million special purpose acquisition company (SPAC) backed...

3D Printing Webinar and Virtual Event Roundup: February 21, 2021

This coming week is chock full of webinars, with three a day for three days running. So without further ado, let’s dive right in! TriMech on Sweeps and Threads in...


Shop

View our broad assortment of in house and third party products.