InfraTrac Successfully Applies Anti-Counterfeit Technology to 3D Printed Metal Parts

Share this Article

infratrac-logoOne of the most nagging concerns that plagues the 3D printing industry is that of intellectual property protection. Not only have there been plenty of issues surrounding the theft of designs and models posted online by individual makers, but large corporations also worry about the potential for 3D printing-savvy people to print counterfeit parts. It’s no surprise, then, that Maryland-based InfraTrac has been welcomed so enthusiastically by the 3D printing and manufacturing industries.

InfraTrac was honored earlier this year as a winner of the America Makes 2016 Additive Manufacturing Challenge for Small Businesses, thanks to their inventive technique involving the incorporation of unique chemical “fingerprints” into 3D printed objects. The technology allows for products to be marked in a way that is nearly impossible to fake, so that they can be authenticated at any time with a simple spectrometer. While the technology has only been used by InfraTrac thus far on polymer materials, the company has now made a new breakthrough by applying it to metal.

infratracThe company successfully 3D printed a part from Ti6Al4V, a titanium alloy used in medical devices as well as aerospace and defense applications, with an authentication tag applied during the printing process. The chemical tag was designed and applied by a team that included Dr. Abdalla Nassar, additive manufacturing researcher at the Applied Research Laboratory at Penn State University (ARL Penn State), and Dr. Timothy W. Simpson, Professor of Mechanical & Industrial Engineering and Co-Director of the Center for Innovative Material Processing through Direct Digital Deposition (CIMP-3D) at Penn State.

The team used CIMP-3D’s Optomec LENS MR-7 3D printer to print several metal parts, taking advantage of the printer’s dual powder feed nozzles to deposit the chemical taggant into one of the Ti6AI4V layers as it was being laid down. Each part had the taggant placed in a different layer and location, and all were then tested by researcher Nathan Valentine at the Center for Advanced Life Cycle Engineering (CALCE) at the University of Maryland, College Park, under the direction of Dr. Diganta Das. Using x-ray fluorescence spectrometry, the CALCE team was able to detect the tags in 100% of the tested parts, regardless of their location.

“We’re thrilled to move into protection of metals, where applications of additive manufacturing are gaining traction,” said Dr. Sharon Flank, CEO of InfraTrac. “Titanium parts are often critical, and counterfeits can be a major safety threat. Fake parts may be cheaper to produce, but they are not sufficient to meet the demands of these applications and will fail. Now we can make tagging and authentication part of the industrial fabrication process. This is a method sensitive enough to permit double protection, secret taggant in a secret spot.”

banner

The success of InfraTrac’s method is a huge step forward for the metal additive manufacturing industry. As Dr. Flank stated, metal parts are often used in much more critical applications than polymer parts, so verifying their authenticity is crucial. A counterfeit aerospace component or medical device has the potential to cost lives. With InfraTrac’s verification system, everyone throughout the entire supply chain can easily check the chemical signature of a part and be assured of its authenticity. Discuss in the InfraTrac forum at 3DPB.com.

 

Facebook Comments

Share this Article


Related Articles

Thesis Student Creates Business Case for Desktop 3D Printing E-Cigarette Cases

Penn State: 4D Printing with Wood Composites for Architectural Applications



Categories

3D Design

3D Printed Architecture

3D Printed Art

3D printed chicken


You May Also Like

Interview with the Director General of CECIMO, Filip Geerts, on Connecting the 3D Printing Industry

We’re very interested in connecting the 3D printing industry and have in a series of articles looked at organizations that are trying to bring us all together. We will need...

Australia: Titomic Unveils Largest 3D Printed UAV, Over 1.8 Meters in Diameter

Titomic, is unveiling what they claim to be the largest titanium 3D printed unmanned aerial vehicle (UAV) at over 1.8 meters in diameter (almost six feet). Created at Titomic’s research...

GE Research and Project Partners Using Metal 3D Printing to Make a More Efficient Heat Exchanger

Heat exchangers are designed to efficiently transfer heat from one matter to another, and are being increasingly produced through the use of 3D printing these days, as the technology can...

Kiwi Companies Partner to Build Tailored 3D Printed Training Prosthetics for Female Para-Athletes

New Zealand-based Zenith Tecnica, which is the only company in the country using Electron Beam Melting (EBM) technology to make 3D printed titanium components, is teaming up with High Performance Sports NZ...


Training


Shop

View our broad assortment of in house and third party products.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!