The development of CubeSats is something we consistently follow in the news. The small, inexpensive, cube-shaped satellites may be humble-looking, but they’re likely to bring us, in the near future, information we’ve never been able to access before. CubeSats have started a new kind of space race, as companies, universities, government agencies, and other institutions rush to build their own satellites and develop new methods of getting them into space.
Northwest Nazarene University in Idaho has been working on its own CubeSat development project for two and a half years. The MakerSat project, the Department of Engineering’s CubeSat research and development initiative, is part of a larger technological development partnership between the Department of Engineering, NASA, Made In Space, Center for the Advancement of Science in Space (CASIS), and bSpace.
The MakerSat team, consisting of NNU students Braden Grim, Mitch Kamstra, Connor Nogales, Aaron Ewing, and Grant Johnson, along with professors Dr. Stephen Parke and Dr. Joshua Griffin, has been working on designing a CubeSat that will ultimately be 3D printed and assembled at the International Space Station and then launched into space. It would be the first satellite or spacecraft ever to be built in space.
The MakerSat mission has four main objectives: to demonstrate the capabilities of 3D printing in space; to demonstrate multi-user, multi-project architecture; to study the rate of decay of 3D printed polymers in outer space; and to take photographs of Earth from orbit. Before it can be 3D printed and assembled in space, however, a CubeSat must be able to be 3D printed and assembled on Earth, and the NNU team just completed that goal, earning their CubeSat the distinction of the first satellite to be manufactured in Idaho.
Earlier this year, NASA selected the MakerSat team in the seventh round of its CubeSat Launch Initiative, which creates opportunities for small satellite payloads to fly into space aboard rockets scheduled to launch for unrelated missions. The MakerSat’s launch was scheduled to happen in March 2018, but recently NASA approached the team and asked them how they felt about launching in March 2017 instead – meaning that the satellite would need to be completed by this November so final testing could be performed before launch.According to Dr. Parke, the team put in about 1,000 hours of work over the past two months to get the satellite ready in time, and it’s now finished and ready to go. On November 4, it will be shipped to California for final testing, and on March 16, 2017, it will head into space alongside a NOAA satellite. Over the next 10 years, it will orbit the Earth at a speed of about 17,000 miles per hour, completing one full orbit every 100 minutes.
The launch of the MakerSat-0, as the satellite’s first iteration has been named, is part of the Educational Launch of NanoSatellites (ELaNa), developed by NASA as part of the CubeSat Launch Initiative for the purpose of attracting more students to the STEM (science, technology, engineering and math) fields. The MakerSat-0 will pave the way for the MakerSat-1, to be built and deployed from the International Space Station.
“So we’d like to someday be able to 3D print a spacecraft or a structure in space,” said Nogales. “And this satellite kind of tests ‘how much material do we use?’ and ‘how much does it degrade in space?’”
Having a completed, launch-ready satellite is a major accomplishment, said Dr. Parke, after putting two and a half years of hard work into the project. Creating the first satellite in Idaho certainly feels pretty good, too. The ultimate goal, though, is educating Idaho’s young people and retaining their interest and enthusiasm for STEM.
“To see them grow into this…to see them succeed at it. This is the real icing on the cake,” he said.
Discuss in the MakerSat forum at 3DPB.com.
[Source: KBOI2]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
Print Services
Upload your 3D Models and get them printed quickly and efficiently.
You May Also Like
Reinventing Reindustrialization: Why NAVWAR Project Manager Spencer Koroly Invented a Made-in-America 3D Printer
It has become virtually impossible to regularly follow additive manufacturing (AM) industry news and not stumble across the term “defense industrial base” (DIB), a concept encompassing all the many diverse...
Inside The Barnes Global Advisors’ Vision for a Stronger AM Ecosystem
As additive manufacturing (AM) continues to revolutionize the industrial landscape, Pittsburgh-based consultancy The Barnes Global Advisors (TBGA) is helping shape what that future looks like. As the largest independent AM...
Ruggedized: How USMC Innovation Officer Matt Pine Navigates 3D Printing in the Military
Disclaimer: Matt Pine’s views are not the views of the Department of Defense nor the U.S. Marine Corps Throughout this decade thus far, the military’s adoption of additive manufacturing (AM)...
U.S. Congress Calls Out 3D Printing in Proposal for Commercial Reserve Manufacturing Network
Last week, the U.S. House of Representatives’ Appropriations Committee moved the FY 2026 defense bill forward to the House floor. Included in the legislation is a $131 million proposal for...