3D Imaging Utilized in Study to Prove Genes Influence Facial Appearance

Share this Article

testIn modern morphology studies, 3D Imaging is one of the very few technologies that grant researchers the ability to conduct in-depth analysis of human facial structures. According to a new study entitled “Genome-Wide Association Study Reveals Multiple Loci Influencing Normal Human Facial Morphology,” researchers have successfully utilized the 3D technology to investigate phenotypic structures and formation of facial features.

In theory, a team of researchers led by John R. Shaffer, Ekaterina Orlova, and Myoung Keun Lee from the University of Pittsburgh have released a set of convincing evidence that could be used to justify that genes influence the formation and development of facial appearance.

With 3D imaging, researchers at the University of Pennsylvania gathered the 3D surface images of 3,118 individuals of European ancestry. All scans were analyzed by the researchers, who observed genome-wide associations in the facial features. Researchers discovered that associations existed between genes and the formation of cranial base (skull structure), intercanthal width (corner of the eye; where the eyelids meet), and nasal width.

Various data sets from the observational study led to a conclusion that certain genes play crucial roles in the development of craniofacial features, significantly affecting facial structures and features. In addition to the 3D imaging-based observational study, researchers also performed a test on genotype-phenotype associations, which further suggested that harboring genes impact variation in facial features.

The University of Pennsylvania’s team of researchers emphasized that the observations and discoveries from the 3D surface images will help the understanding of facial morphology, thus revolutionizing the field of abnormal facial morphogenesis.

3D Imaging Technique; Canfield Scientific

3D Imaging Technique; Canfield Scientific

“Improved understanding of the genes associated with facial morphology in healthy individuals can provide insights into the pathways and mechanisms controlling normal and abnormal facial morphogenesis,” read a section of the study.

1More importantly, the 3D imaging technique utilized by the researchers can be utilized to better develop forensic facial reconstructions from DNA. That means, the creation of evolutionary models on human facial features is now a possibility.

“Our ability to connect specific genetic variants to ubiquitous facial traits can inform our understanding of normal and abnormal craniofacial development, provide potential predictive models of evolutionary changes in human facial features, and improve our ability to create forensic facial reconstructions from DNA,” the authors stated.

As seen in the study infographic at right, each unique 3D image of the facial structures of individuals of European descent allowed the researchers to produce a comparison chart between evolutionary changes in facial features, which makes it simpler for researchers in the field to understand the relationship between genetic variance and facial structure.

In addition to Shaffer, Orlova, and Lee, contributing authors in full included Elizabeth J. Leslie, Zachary D. Raffensperger, Carrie L. Heike, Michael L. Cunningham, Jacqueline T. Hecht, Chung How Kau, Nichole L. Nidey, Lina M. Moreno, George L. Wehby, Jeffrey C. Murray, Cecelia A. Laurie, Cathy C. Laurie, Joanne Cole, Tracey Ferrara, Stephanie Santorico, Ophir Klein, Washington Mio, Eleanor Feingold, Benedikt Hallgrimsson, Richard A. Spritz, Mary L. Marazita, and Seth M. Weinberg. Discuss this in the Genetics Study forum at 3DPB.com.

maxresdefault

3D Imaging Technique; Canfield Scientific

Facebook Comments

Share this Article


Related Articles

Overcoming Daylight 3D Scanning Limitations with RealSense and Dot3D

3D Pod Episode 7 3D Scanning & Interview With Direct Dimensions CEO Michael Raphael



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Bioprinting 101 – Part 12, Phantoms

3D Printed Breast Phantom Within the bioprinting area, a phantom refers to a model of the body or of a specific part thereof. Typically we are using replicas of an...

3D Scanning Buying Guide 2019

3D scanning has always shown a lot of promise for widespread use. The various 3D scanning technologies have had a difficult time deliverig on this promise. Whereas 3D scanning is...

Bioprinting 101: Part 7 – Applications

We have discussed a lot about materials within bioprinting as well as different printers that are used to work on bioprinting technology. We have not had an in-depth focus on...

Artec3D Scanning: Exact Metrology Works with Reading Historical Society to Preserve First World War I Monument in the US

The Exact Metrology team is continuing the ongoing preservation of history via 3D scanning with the Artec3D Eva 3D scanner. In their most recent project, they worked with the Reading...


Training


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!