When Penn State University industrial engineering doctoral student Rakshith Badarinath was just a child, he already knew that his future would involve a career in manufacturing. With his eyes glued to Discovery Channel shows about car factories and the like, he eventually decided to pursue a bachelor’s degree in electrical engineering from the Siddagana Institute of Technology in India. Following that, Badarinath ended up attending Penn State for his graduate studies, which is where he was introduced to 3D printing technology for the first time in his life.
Ever since that fateful day, Badarinath has been working with faculty members from the Harold and Inge Marcus Department of Industrial and Manufacturing Engineering to convert old machines into 3D printers for the department’s Factory for Advanced Manufacturing Education (FAME) lab. Now, Badarinath has collaborated with Shu Shu Wang, who at the start of the project was working toward her master’s degree in industrial engineering, to build a robotic arm with the help of multiple 3D printing processes. The two innovators were connected by their advisor, Vittal Prabhu, and together, they worked to develop a robotic arm that would help improve manufacturing operations.
Badarinath was able to purchase the plans and coding for the “MeArm” robotic arm through an open-source software platform. His collaborator, Wang, had previously written a thesis comparing the results of different 3D printing processes to create an object, which is what the duo did to optimize their robotic arm. The university’s FAME lab is currently equipped with both FDM printing and material jetting, both of which were used to produce parts for their robotic project. After two months of researching both processes, Badarinath and Wang decided that material jetting was the best option for their endeavor, as it proved to be more precise and have better resolution than FDM 3D printing.“We were focused on seeing if 3D printing would change the functionality of the arm,” Badarinath said. “Different processes can render different results. We wanted to know which was the most accurate and if inaccuracies would alter the end effect for the arm, which is extending and then gripping something.”
Since the completion of their project, Wang has graduated with her master’s degree, while Badarinath still has three years left in his program, and is already off to another project. 3D printing technology has become a valuable asset for the production of robotic arms, whether they’re used for educational or assistive purposes. In the case of the two Penn State students, their 3D printed robotic arm project was just an enjoyable side project. Currently, Badarinath is working on a major personal project, which involves using industrial robotics for 3D printing technology. Discuss further in the 3D Printed Robotic Arm forum over at 3DPB.com.
[Source: Penn State]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
3D Printing News Unpeeled: ORNL To Make 46 Tonne 410 Steel Additive Part
EOS is to make its M 290 in Pflugerville, Texas as well as in the US starting in Q1 2025. This is in response to a successful US government policy...
EOS Expands U.S. Production with EOS M 290 Metal 3D Printer
German powder bed fusion (PBF) leader EOS has unveiled plans to expand its assembly of the popular EOS M 290 metal 3D printer at its Pflugerville, Texas facility, near Austin....
3DPOD 216: Glynn Fletcher, EOS North America President
Glynn Fletcher is the President of EOS North America. Transitioning from the machine tool world to 3D printing has given him a unique perspective compared to many others in our...
3D Printing Webinar and Event Roundup: August 31, 2024
For the last webinar and event roundup of the summer, we have a variety of in-person and virtual options for you this week! There will be a Markforged FX20 demonstration...