Australian Researchers Explore the Superconductive Properties of 3D Printed Parts

Share this Article

supercon

[Image: Tim Sercombe/University of Western Australia]

One year ago, we covered the scientifically progressive plans of University of British Columbia quantum materials researcher Jennifer Hoffman, who has been optimistically working towards quantum 3D printing, which would essentially enable the 3D printing of objects on the atomic scale. At the time, one of Hoffman’s primary goals over the next five years was realizing topological superconductivity, which would consist of characterizing superconducting behavior within confined geometries, and ultimately ‘3D printing’ layered arrays of superconducting 0s and 1s to create quantum devices. Superconductivity is a phenomenon that consists of absolutely zero electrical resistance, as well as the expulsion of magnetic flux fields in certain materials.

Well, a team of Australia-based researchers from the University of Melbourne and the University of Western Australia have just released a report that shows Hoffman’s hopes coming to fruition. The research team was able to 3D print a resonant microwave cavity from viaan aluminum-silicon alloy (Al-12Si) material, which successfully showcased superconductivity when cooled below the critical temperature of aluminum, which is considered to be 1.2 Kelvin. This breakthrough research could have a major impact on quantum physics and particle accelerators, and puts the electrical properties of 3D printing materials in the much-deserved spotlight.

Tobar

University of Western Australia’s Professor Michael Tobar

“The physics of superconductivity is well understood, and it has been known for decades that aluminum exhibits superconductivity,” Professor Michael Tobar, University of Western Australia node director of the Center for Engineered Quantum Systems, said. “But the 3-D printing process relies on aluminum that’s far from pure and it undergoes several processes—atomization, laser melting, furnace annealing, etc. So we wanted to explore whether a range of known superconducting metals could successfully be 3-D printed and retain their desirable electrical property.”

The researchers utilized a selective laser melting 3D printing technique for their experimentation, which uses a grain-based material to produce metal-based objects. The research team found that, not only do dissimilar materials have different electrical properties from one another, but the superconductivity of the object is also directly influenced by the grain size of the material. The team found that the grain size can increase and decrease the critical temperature needed to reach superconductivity, which lead them to hypothesize that reducing the grain size could enable more advantageous 3D printing methods in regard to superconductivity.

Samples of the metal 3D printed cavities used in the experimentation.

Samples of the metal 3D printed cavities used in the experimentation.

To prove the usefulness of their research, the team decided to 3D print the resonant microwave cavity. Using a device called a ‘vector network analyzer’, the research team managed to excite the electromagnetic modes of resonance at microwave frequencies inside the cavity, and measured then measured how long these injected microwaves are able to be stored within the 3D printed cavity before dissipating (known as the Q-factor). The research findings are set to be of immediate use for people looking to 3D print magnetic shielding for experimentation, and will also benefit any cavity experiment requiring a Q-factor measurement. Still, the research team acknowledges that there’s much more work to be done in this field before we fully actualize quantum 3D printing.

“There is relatively little in the literature regarding 3-D printed superconductors, so further work must be done to determine more appropriate materials and how to improve the surface finish and resistance of the parts—possibly via heat treatment or chemical polishing/etching,” said Tobar.

Next, the Australian research team will conduct a similar experiment with another material widely used to produce superconductive cavities, a highly pure niobium powder. The team expects similar or even more successful results with this pure metal powder, especially with the newfound information they’ve discovered on the impact of a material’s grain size. By exploring and enhancing the superconductive properties of these 3D printed cavities, the research team is pushing Hoffman’s dream of quantum 3D printing towards reality.

This week, their research will be published and appear on the cover of the academic journal Applied Physics Letters. Headed by Professor Tobar, the rest of the research team included Daniel L. Creedon, Maxim Goryachev, Nikita Kostylev, and Timothy B. Sercombe. Discuss this topic further in the 3D Printing & Superconductivity forum over at 3DPB.com.

[Source: Phys.org]

Share this Article


Recent News

Velo3D’s $8 Million IP Deal with SpaceX: A Lifeline or a Double-Edged Sword?

Canadian 3D Printing OEM Mosaic Pulls in Over $20M in Latest Financing Round



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Chromatic 3D Materials Raises $6M to Drive 3D Printing of Flexible Materials

Amid much doom and gloom, we are seeing a notable amount of funding for the 3D printing market, with 3DEO, Mantle, Orbex, Q5D, CORE Industrial Partners, Replique, Inkbit, and others...

Featured

6K Lands $82M for Batteries and 3D Printing Powders in Series E Round

6K, the Massachusetts-based parent company of 6K Energy and 6K Additive, has secured $82 million in the opening of its Series E round, with the round planned to close out...

3D Printing Webinar and Event Roundup: August 18, 2024

In this week’s Webinar and Event Roundup, Stratasys continues its advanced training courses and its U.S. tour, while TriMech hosts a Technology Showcase, Endeavor 3D offers a webinar about robotics...

Improving Intelligent Crop Breeding with 3D Printed Sugar Beet Plant

A team of German researchers are working to bring farming into the future by developing AI-assisted crop pipeline improvement. By using laser scanning and consumer-grade FDM 3D printing, they were...