American Process Inc. Partners With Swansea University to Develop 3D Printed Tissue Using Nanocellulose

Share this Article

dalan

Dalan Jennet received a 3D printed nose after a severe burn.

Of all the amazing things that 3D printing has done, facial reconstruction is one of the most incredible. It wasn’t long ago that someone suffering from severe facial damage or deformity had to resign themselves to living with that disfigurement, but advancements in reconstructive surgery have been happening fast, and a lot of that has to do with 3D modeling and printing. The technology has given a burned child a new nose, restored an accident victim’s cheekbone and eye socket, and even given a firefighter an entirely new face – and that’s just to name a few examples.

A new collaboration between two prominent institutions has the potential to take reconstructive surgery even further through bioprinting. American Process Inc. (API), an Atlanta-based company dedicated to the development of renewable biomass materials, has entered into a Joint Development Agreement (JDA) with Swansea University Medical School in Wales to develop 3D printed cartilage to be used for facial reconstruction.

ReconRegen_logo_Red-01The project is being funded by a grant from the United Kingdom’s Medical Research Council to Swansea University’s Reconstructive Surgery and Regenerative Medicine (ReconRegen) Research Group, which consists of a team of scientists and clinicians researching the use of tissue engineering and stem cells in reconstructive and regenerative procedures. Their research has shown that nanocellulose is compatible with human cells and can be 3D printed as a support structure in bioprinting – and also that living cells can survive the printing process.

One of API’s major products is their BioPlus nanocellulose material, which will be used as part of the JDA to create scaffolding material for the project. Human cells will be blended with various nanocellulose scaffold formulations and 3D printed to create living tissue which, the research group hopes, can eventually be used for reconstructive surgery. The goal is to develop anatomically-shaped tissue, tailored to individual patients, that can survive long-term.

whittaker

Professor Iain Whitaker

“3D printing is increasingly used to manufacture prosthetics and implants from materials like plastic or titanium. But bio-printing – using human cells instead of man-made material – is a promising new science,” said project lead Professor Iain Whitaker, director of the ReconRegen group. “We are printing living tissues, living structures, tailored to the needs of individual patients.

 

“We hope that in the future, patients who have lost all or part of their ear or nose through trauma or cancer could have reconstruction using new tissue which is grown from their own cells using nanocellulose. Biomaterials are a key component of our tissue printing technology and nanocellulose is our biomaterial of choice because of its biocompatibility, mechanical and structural properties that can support cell attachment and growth in three-dimensions.”

Nanocellulose is ideal as a bio-ink for numerous reasons. Its high water-holding capacity and particle assembly in water allow it to form shear-thinning gels that flow like liquid during printing but solidify into firm, gel-like structures after being deposited. Those structures then further harden into dense, strong forms after drying. It’s like the ultimate natural filament.

bioplus-logo1-350pxAPI’s BioPlus technology is currently being demonstrated at their Thomaston Biorefinery in Thomaston, Georgia, home to the company’s research and development laboratory. Currently, API possesses four patents in the United States, with more than 100 pending. Their BioPlus method is capable of creating nanocellulose products with a variety of particle sizes and surface chemistry, which, along with its capability for generating large quantities of material, makes it ideal for the project, according to MRC Clinical Research Fellow Zita Jessop.

“Nanocellulose has a variety of advantages that we expect to significantly impact the growing biomedical engineering field,” said Theodora Retsina, CEO of API. “Tissue engineering alone will have significant impact on the global economy. According to a recent market report, the global market will increase from US$23 billion currently to over US$94 billion by 2022. We are thrilled to collaborate with the innovators at Swansea who are contributing to this global growth. We built our BioPlus® nanocellulose demonstration plant to support efforts such as this to develop break-through technologies that will provide solutions for a more healthful, prosperous future for global citizens.”

Discuss further in the 3D Printed Cartilage forum over at 3DPB.com.

b-samples

 

Share this Article


Recent News

Tesla Veteran Kevin Kassekert Takes the Helm as VulcanForms’ New CEO

3D Printing Unpeeled: Screen Printing Drugs, Repair Process for Marines & PCL Drug Release



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing News Briefs, September 15, 2024: Crowdfunding, EVs, Microalgae, & More

Good news for Fishy Filaments, which has reached a major funding milestone! This kicks off our business news in today’s 3D Printing News Briefs, followed by Voxel Innovations relocating its...

3D Printing News Briefs, September 7, 2024: Ceramics & e-Beam, 3D Circuits, & More

In 3D Printing News Briefs, Sandia acquired a second LCM 3D printer from Lithoz, and Freemelt successfully installed its e-MELT-iD at WEAREAM. Bright Laser Technologies now offers high-precision metal LPBF...

3D Printing News Unpeeled: Custom Cycling Shoes and Microwave Curing

 Lawrence Livermore National Laboratory (LLNL) has developed Microwave Volumetric Additive Manufacturing (MVAM), which uses microwaves to cure 3D printed parts. In a paper they explain that a multi-physics model let...

3D Printing News Unpeeled: $970 Million Contract, Plasters and HEA

Researchers from the University of Pennsylvania, the University of Colorado, NIST and more have worked on “Additive manufacturing of highly entangled polymer networks,” where low use of photoinitiators along with a...