Look Out, NASA – Here Comes Vulcan-1! Students Successfully Launch Rocket With Fully 3D Printed Engine

Share this Article

vlaunchSorry, NASA, you’ve been usurped – for the moment, anyway. It’s no secret that the agency has been working towards building a rocket engine made completely from 3D printed parts, and they’re getting very close to completing it. But now someone else has stolen the 3D printed rocket engine thunder – not China, or Russia, but a group of university students from the University of California San Diego. On May 21, the Mojave Desert echoed with the sound of the Vulcan-1 as it lifted off, followed by the ecstatic cheers of the students who had spent long months working to build it and get it off the ground.

Students for the Exploration and Development of Space (SEDS) is a national nonprofit dedicated to enabling university students to, according to their website, “participate and make an impact in space exploration.” Colleges around the country host chapters of the organization, but the UCSD chapter is the star of the moment. The launch of their 3D printed rocket engine wasn’t just cool, it was historical – according to the student group, they are the first university organization ever to successfully fly and recover a liquid rocket powered by a 3D printed engine.

engineThe Vulcan-1’s engine, dubbed Ignus, was 3D printed entirely with Inconel 718, and according to the students, it contains an internal structure of “channels and chasms,” which optimize the efficiency of the combustion, that could only be produced through 3D printing. With 750 pounds of thrust and a chamber pressure of 400 PSI, the engine is 8 inches in diameter, 10 inches high, and fueled by liquid oxygen and kerosene RP-1. According to UCSD SEDS, while they’re not yet entirely sure what altitude the Vulcan-1 reached on Saturday, their current estimate is that it got to about 4,000 feet.

The endeavor has been in the works for a long time. The engine was printed in March 2015, and the entire rocket project took, according to UCSD SEDS, “100,000+ collective hours of effort over 3 generations of SEDS team members.” Its construction took place at Open Source Maker Labs, a fabrication lab in nearby Vista, California.

“[The Vulcan-1 project] started in the fall of 2014, where the goal for that year was to design three different injector plates and one combustion chamber, design a static-fire system, and test all three injector plates during the fall and winter quarter. The best injector plate with the best data, we would put that on the rocket,” said Kenneth Benedictos, Engine Team Co-Lead, Officer of Internal Affairs, and a founding member of UCSD SEDS.

rocketfab

“The goal was to have that rocket built and flown in Utah, but that was a really ambitious timeline and we ended up taking a whole year to build the rocket,” Benedictos continued. “After we knew the first injector plate we tested–Ignus–worked, we were able to mount that to the rocket. We tried to design the whole project in one quarter–that obviously didn’t work out, because we started fabricating before we even started designing. That was a big lesson we learned in project engineering–you always have to design and analyze before you can even touch a wrench.”

Several pitfalls happened along the way to getting the Vulcan-1 off the ground, and the launch had to be pushed back a few times, but each setback enabled the students to learn, troubleshoot and perfect the rocket’s design so that it the best it could be at the time of launch. The project doesn’t end here, however. In the future, the UCSD SEDS team is looking to build more powerful engines – the recently launched Vulcan-1 is just a “stepping stone.” And unlike the spent jet fuel, the students are far from burned out.

vulcan

“It’s crazy to see where everything’s gone,” said Benedictos. “It just started as a group of guys who were friends and all had a similar vision. We all liked to deal with things that combust. So that was cool–it was a small team and with a small team, you wear a lot of hats, kind of like a small company…. But now, after every project we’ve added, we need more designers, engineers, everything, and with the success we’re having, to give us more support and enable us to do more work. Each new project, there’s new members with newfound inspiration and motivation. And it’s like creating a movement, a wave that starts off small and grows into one big movement, one big wave that everyone’s riding.”

Watch the historic launch below (or, to see more footage from the day, you can also check out the full hour-plus-long live stream that was aired as it happened). Discuss further over in the Students 3D Print Rocket Engine forum at 3DPB.com.

[Images: UCSD SEDS/Facebook]

 

Share this Article


Recent News

Local Motors’ Parent Firm Receives $15M Investment for Autonomous 3D Printed Shuttle, Olli

Additive Drives to 3D Print Better Electric Engines with AM Ventures Investment



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Lower Austrian Government Funds 3D Printing Businesses

Whereas the Netherlands and Germany have long been hotbeds of 3D printing activity, nearby Austria so far has not. The government of the Province of Lower Austria plans to change...

3DPrintUK Adds HP MJF 3D Printing to Services in £1M Expansion

3DPrintUK has recently expanded its offerings to become the first service bureau in the UK to provide advanced HP MJF 5210 parts. The prototyping and low-volume 3D printing production specialist...

Featured

Metal 3D Printer Buyer Guide 2020

Metal 3D printing has seen a lot of attention leveled at it over the past several years, with the metal additive manufacturing (AM) market seeing real growth over the past...

ASTM Drives 3D Printing Standards via Investment into Eight Crucial Projects

Nonprofit organization ASTM International announced its third round of funding to support research that will help expedite standards in additive manufacturing (AM). The group creates and publishes technical standards for...


Shop

View our broad assortment of in house and third party products.