3D Printed Claw Device Takes Inspiration from Pacific Sea Urchins

IMTS

Share this Article

3PAY-A-3D-printed-claw-to-explore-Mars-has-been-created-by-scientists-inspired-by-the-sea-urchins-teeth

[Image: Jacobs School of Engineering / UC San Diego / SWNS]

As with most politically aware, socially conscious citizens of the world, you have probably caught yourself wondering: “I know that sea urchins are nice and all…but what have they done for us lately?” And it is a reasonable question. After all, when was the last time you turned on the news to a headline such as “Alert Sea Urchin Saves Woman from Burning Building”? I would suggest you improve the quality of your news sources in that case.

But if engineers and marine biologists at the University of California have anything to do with it, you just might start to see headlines indicating the power of the sea urchin to assist in the exploration of Mars. No, they are not crafting tiny, round suits to send the spiny species into space. Instead, the group of researches is looking at the way in which the mouth of the sea urchin functions in order to create a better boring device that could potentially be attached to a small remote-controlled rover sent out through the vast expanses between planets to explore the surface of Mars.

The sea urchin is a hardy creature that thrives in a continuously shifting watery environment and uses its specialized mouth to both carve out protective niches in rocks and to eat. Their mouths contain five triangular teeth arrayed radially, somewhat akin to the claw in the prize-grabbing arcade game – although unlike the game claw, these mouths actually function. Ideally, mini rovers equipped with such a mouth could be deployed from a larger rover to collect samples with great accuracy and less local disturbance than the current shovel type collection devices used by NASA.

Urchin9b

Sea urchins, more affectionately known as hedgehogs of the sea, lend themselves to contemplation of outer space as their construction looks more like that of a high-end, albeit evil, interstellar travel device, but that doesn’t mean that the transference of its mouth technology to sample collector was immediately apparent. The team that worked to develop this working claw went through a great deal of study and multiple iterations before arriving at a successful 3D printed interpretation.

PAY-A-3D-printed-claw-to-explore-Mars-has-been-created-by-scientists-inspired-by-the-sea-urchins-teeth

[Image: Jacobs School of Engineering / UC San Diego / SWNS]

Before construction of the claw could begin, the team carefully examined the mouth pieces of a local pink sea urchin (Strongylocentrotus fragilis), scanned them with 3D microscopes, and created a digital model of that geometry. The primary apparent area for focus was on the shape and relationship of the individual teeth. However, the team soon discovered that there was more to the creation of this mini-maw than its teeth.

It wasn’t until the researchers revisited the way in which the teeth connected to the device that they discovered the key to creating a successful sampler. So far the device has performed well in tests, scooping up beach sand as well as soil that simulates the density and moisture level of the soil on Mars. Using 3D print technology, the team was able to design, experiment, and prototype in a rapid succession to arrive at a highly functional device that they hope will be of interest to NASA. The full study has been published in the Journal of Visualized Experiments. How do you think technology can learn further from mimicking nature? Discuss in the 3D Printed Urchin Claw forum over at 3DPB.com.

[Source: Mirror]

Share this Article


Recent News

EOS & AMCM Join Forces with University of Wolverhampton to Establish UK Centre of Excellence for Additive Manufacturing

3D Printing News Unpeeled: Better Elastomers, Mailbox Keys and Origami Networks



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Unpeeled: New Arkema Material for HP, Saddle and Macro MEMS

A new Arkema material for MJF is said to reduce costs per part by up to 25% and have an 85% reusability ratio. HP 3D HR PA 12 S has been...

3D Printing News Briefs, January 20, 2024: FDM, LPBF, Underwater 3D Printer, Racing, & More

We’re starting off with a process certification in today’s 3D Printing News Briefs, and then moving on to research about solute trapping, laser powder bed fusion, and then moving on...

3D Printing Webinar and Event Roundup: December 3, 2023

We’ve got plenty of events and webinars coming up for you this week! Quickparts is having a Manufacturing Roadshow, America Makes is holding a Member Town Hall, Stratafest makes two...

Formnext 2023 Day Three: Slam Dunk

I’m high—high on trade show. I’ve met numerous new faces and reconnected with old friends, creating an absolutely wonderful atmosphere. The excitement is palpable over several emerging developments. The high...