Exone end to end binder jetting service

Ultrasonic 3D Printing Allows for Electronics to be Embedded in Metal via Sound

INTAMSYS industrial 3d printing

Share this Article

A machine’s sensors take a beating during its lifetime. They can degrade over their lifetime of use due to force, corrosion, or the simple wear of everyday usage. It may be possible to significantly extend the lives of this important sensor equipment by housing them in solid metal. While it wouldn’t keep them operational forever, such a protective case could conceivably give them a much longer life cycle.

One of the problems with embedding sensors in protective metal casings, however, has been that some of them are damaged by exposure to the high temperatures necessary for the process. With the development of a new process, known as Ultrasonic Additive Manufacturing (UAM), sensors can be embedded in metal without the concurrent damage.

ultrasonic-additive-manufacturiing

UAM Machine – Fabrisonic.com

Ultrasonic additive manufacturing, a solid-state printing process, uses waves of sound to merge layers of metal foil. As a result, true, full density metallurgical bonds can be created for a variety of metals. When combined with other additive and subtractive processes, a number of highly complex geometries can be created and integrated. It would not be possible to create these complex forms with other conventional subtractive manufacturing processes when performed alone. UAM can create hollow, latticed, or honeycombed internal structures in addition. A number of different types of sensors have been successfully integrated into components using UAM processes, including thermocouples, strain sensors, accelerometers, and pressure transducers. One type of sensor, utilizing fiber optic Bragg gratings to give precise strain measurements, has been embedded in aluminum, increasing the amount of time between necessary maintenance operations.

Smart materials provide actuation and/or material property changes, but these materials do not act of their own free will. Instead, they must have an integrated mechanical and electronic structure. Most often, this is done through the attachment of smart actuators onto the structure. This type of actuator placement is seen with materials such as electrostrictive, magnetostrictive, shape memory alloy, piezoelectric, and electroactive polymers.

This photo shows the embedment of ‘sensor’ plastic strips in solid aluminum. The plastic has piezoelectric properties that produce a voltage when the plastic is stretched. This voltage can be used to measure the stress/strain in a metal part under load.

This photo shows the embedment of ‘sensor’ plastic strips in solid aluminum. The plastic has piezoelectric properties that produce a voltage when the plastic is stretched. This voltage can be used to measure the stress/strain in a metal part under load.

Limits in the manufacturing process previously prevented embedding the smart materials directly into the structures, despite the fact that this was a more sophisticated and highly desired approach. Traditional welding obviously brings with it significant problems related to the heat produced during the process. Similarly, fusion, bonded laminations, and sintering have been met with only small success. Given the solid-state nature of the ultaUAM process, it can reliably integrate these materials without causing the damage resulting from the other previously available manufacturing processes. Aluminum blocks have been successfully embedded with wires, strips, and foils.

One practical application of this new method for manufacturing comes in addressing the problem of thermal expansion. When materials are heated they expand and when they are cooled, they contract. This shift can cause strain on materials leading to catastrophic failure over time. Within specific temperature ranges, however, shape memory alloys can act as a counter to the heating and expansion by being programmed to contract at those temperatures. The coefficient of thermal expansion (CTE), the measurement by which a materials contraction in reaction to heat is measured, has been shown to be reduced in the presence of these materials. In order for this to be the case, however, the shape memory alloy must be embedded into the metal itself and this is now possible given UAM technologies.

There are a number of other practical applications for UAM, from lamination of sensors into switch networks that expand potential frequency bandwidth, to impact detection in structural elements. As this technology comes to the attention of the advanced manufacturing community, we are sure to see a number of innovative applications spring up relatively quickly in the near future.

Let us know your opinion on this sophisticated technology, and what it may mean for manufacturers going forward, in the ultrasonic 3D printing forum thread on 3DPB.com.

[Source: Fabrisonic.com]

Share this Article


Recent News

3D Printing News Briefs, September 21, 2021: 3D Printed COVID Test, Meatless Burgers, & More

Can Fluicell’s Bioprinted Tissue Help Treat Type 1 Diabetes?



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Webinar and Event Roundup: September 12, 2021

Buckle your seatbelts, it’s going to be a busy week of webinars and events, both virtual and in-person! RAPID + TCT and FABTECH will both be held in-person this week...

Featured

Sixth Bioprinting Acquisition in One Year from Cellink Parent Company BICO

Pioneering bioprinting firm Cellink, now part of a larger company rebranded as BICO (short for bioconvergence), has already been making quite a name for itself and is preparing to capture...

Featured

Complete Tumor 3D Printed to Facilitate Faster Treatment Prediction

There are more than 120 different types of brain tumors, many of which are cancerous, but the deadliest, and sadly most common, is the aggressive, fast-growing glioblastoma multiforme (GBM), a...

3D Printing Webinar and Event Roundup: August 15th, 2021

From convincing your professor they need a 3D printer and the future of static mixers to biomaterials and bioprinting, we’ve got another week of webinars and events to tell you...


Shop

View our broad assortment of in house and third party products.