AMS Spring 2023

EpiBone Uses 3D Technology to Grow Human Bones Outside the Body

6K SmarTech

Share this Article

epiboneThe human body has amazing capacities for repairing itself, but it’s far from perfect; some injuries or deformities are too much for the body itself to make whole. For ages, that’s been accepted as a fact of life, but as technology develops, there are fewer and fewer unfixable things that can befall a person. In the 19th century, it would have seemed inconceivable that bacterial infections could one day be killed off with a simple pill, but antibiotics would be arriving soon. Today, most people would say that growing real human body parts is impossible, but we’re starting to learn that that’s not the case.

Nina Tandon has been growing human tissue since her days as a biomedical engineering student at Columbia University. She began experimenting with cardiac and skin tissue, then moved on to one of the trickiest types of organic material – bone. Tandon is the co-founder and CEO of EpiBone, a startup that has discovered a way to literally grow human bones.

nina-tandon-in-lab

Repairing damaged bones is painful and challenging, as anyone who’s ever broken a bone will know. It gets even more difficult when bone is actually missing due to disease or congenital deformity, or when a bone is broken so severely that it can’t fuse itself back together without additional help. Bone grafts are painful, unpredictable and carry a host of potential complications, so they’ve been a major focus for the medical industry lately. With 3D printing and other technology sweeping in to fix even the most challenging medical issues, bone grafts are a priority, and we’ve seen many researchers take on the issue with an intriguing variety of approaches.

finished-epiboneWhat most of those approaches have in common, though, is 3D technology. Some organizations are printing synthetic bone grafts with biocompatible materials like ceramics; others are using animal bones as a base for regenerating human bones. EpiBone falls into the second category, but what makes the company particularly interesting is that their process uses a patient’s own cells to grow new bones outside the body.

EpiBone’s technique is surprisingly simple. A CT scan is taken of the patient’s damaged bone, and a 3D model is created. That 3D model is used to CNC mill an animal – usually cow – bone into the exact shape of the graft that needs to be implanted into the patient. Then, fat cells are taken from the patient, and stem cells from the fat are isolated. (Stem cells from fat are capable of growing into many other different forms of tissue, which makes them ideal for this process.) Those stem cells are placed into a bioreactor with the milled animal bone; the idea is that they will grow around the bone, essentially engulfing it – when the bioreactor is opened, a new bone comprised of the patient’s own cells will be ready for implant. Once it’s implanted, it continues to grow and merge with the bone around it.

bioreactor-hands

Of course, it’s not really as simple as it sounds – conditions have to be carefully engineered and monitored for the cells to grow in the way that they need to. EpiBone is currently testing the procedure by growing cheekbones for pigs, and human trials could potentially begin in a few years, but there’s still a lot of work to be done. Ultimately, the team at EpiBone wants to try growing larger and more complex bones, as well. Check out the video below for a close-up look at the process. Discuss this new technology in the EpiBone 3D Printed Bone forum over at 3DPB.com.

 

Share this Article


Recent News

Generator Leader Generac Invests in 3D Printed Fuel Cell Stack Startup

3D Printing News Unpeeled: Novineer, Desktop Engraving for Circuits and the US Air Force



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Laser Wars: SLM Solutions Announces Order for Massive NXG XII 600E Metal 3D Printer

SLM Solutions (AM3D.DE) previously announced that it would collaborate with military research organization Concurrent Technologies Corporation (CTC) to build a large metal printer for the Air Force Research Laboratory (AFRL). The resulting...

3D Printing Webinar and Event Roundup: October 16, 2022

Because there an insane number of events and webinars for this week’s roundup, I’m going to do things a little differently in this edition. First, I’ll list all of the...

Réplique Adds a Quality Monitoring Tool to its 3D Printing Service

Replique, a BASF venture builder company, wants to make it possible for industrial firms, such as Alstom and Miele, to 3D print spare parts the world over. All the while,...

Essentium Demos High-Speed 3D Printer at US Navy’s REPTX 2022

Essentium, a Texas-based additive manufacturing (AM) services provider and original equipment manufacturer (OEM), announced that the company successfully participated in the US Navy’s REPTX 2022 exercises, which were held August...