Organovo & Uniquest Partner in Patenting & Bioprinting Actual Kidney Tissue

Share this Article

Organovo_LogoOrganovo is one of the most fascinating companies that we follow–and quite continually–as the dynamic company has kept the momentum rolling with one scientific breakthrough after another.

Famous for the design and creation of functional human tissues for medical applications, we’ve recently also been following Organovo and other partnerships in researching human tissue as well as offering the first 3D bioprinted liver product.

It’s just been recently announced that Uniquest signed a worldwide licensing agreement with Organovo to patent kidney cells from induced pluripotent stem cells (iPSCs). Professor Melissa Little and her team at Uniquest have actually been able to grow kidney tissue which should prove to be helpful in not only drug screening but also disease modeling and cell therapy.

UniQuest Logo2015Research, in the paper ‘Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis’ published recently in Nature, discusses the method by which Little and her team have been able to grow cell types basically by generating kidney cells containing nephrons. In identifying a way to collect the proper materials, they were indeed able to generate true kidney organoids.

“When transcription profiles of kidney organoids were compared to human fetal tissues, they showed highest congruence with first trimester human kidney,” stated the researchers in their paper. “Furthermore, the proximal tubules endocytose dextran and differentially apoptose in response to cisplatin, a nephrotoxicant. Such kidney organoids represent powerful models of the human organ for future applications, including nephrotoxicity screening, disease modelling and as a source of cells for therapy.”

Together the teams will be working to develop the science, research, and development further of the kidney tissue.

“The mini-kidney we have been able to grow is very complex and more like the real organ,” Professor Little said.  “This is important for drug testing as we hope these mini-kidneys will respond to the drugs as a normal organ might.”

nature15695-f2

Figure 2 from the paper: “Generating a kidney organoid equivalent to the human fetal kidney in vitro.”

While the mini-kidney is a huge step, it’s important to note that with the recent research, they have gone much further with developing kidney tissue. Organovo figures clearly into the picture as they will be using their famed bioprinting technology to separately develop a ‘kidney proximal tubule tissue’ that they project being released in 2016.

“We are excited to license this groundbreaking technology to enable the development of human kidney tissues that could change the landscape of drug testing and kidney research. Working with leading scientists such as Professor Little extends our leadership position in the generation and commercialization of tissues that better recreate in vivo human biology,” said Organovo’s Chief Technology Officer, Sharon Presnell, Ph.D.

Organovo will also continue to work with Professor Little in developing the intellectual property in extremely valuable and commercial applications for the kidney tissue, such as:

  • Kidney disease modeling
  • Nephrotoxicity screening
  • Examining compounds to improve function in patients with renal disease

o4While Organovo will be launching their tissue product next year, it is expected that Uniquest’s licensed technology would be launched sometime after that.

“This deal is anchored in world-leading induced pluripotent stem cell research by Professor Melissa Little and follows a research collaboration between The University of Queensland and Organovo, facilitated by UniQuest.,” said UniQuest CEO Dr. Dean Moss. “We are delighted to work with Organovo so that they can further develop and commercialise the technology to accelerate the drug discovery process and enable treatments to be developed faster and at lower cost.”

nature15695-f3

Figure 3 from the paper: “Kidney organoids contain differentiating nephrons, stroma and vasculature with progressive maturation with time in culture.”

This partnership is certainly one we’ll be following as Organovo will be granted development and commercialization rights for applications regarding in vitro while Uniquest will be receiving ‘technology access fees’ and royalty payments.

The paper ‘Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis‘ was authored by Minoru Takasato, Pei X. ErHan S. ChiuBarbara MaierGregory J. BaillieCharles FergusonRobert G. PartonErnst J. WolvetangMatthias S. RoostSusana M. Chuva de Sousa Lopes, and Melissa H. Little.

Let’s hear your thoughts on this partnership and what it may mean within the bioprinting space.  Discuss in the Organovo / Uniquest forum thread on 3DPB.com.

Share this Article


Recent News

Mighty Buildings’ Commercial House 3D Printing Automates Construction by 80 Percent

MakerOS Webinar: Make the Most Profit from Your 3D Printing Business



Categories

3D Design

3D Printed Art

3D printed automobiles

3D Printed Food


You May Also Like

3D Printing Webinar and Virtual Event Roundup, August 9, 2020

We’ve only got four online events to tell you about this week—a summit and a few webinars, one of which is on-demand. Read on to learn more! AM Industry Virtual...

Featured

Additive Manufacturing Strategies 2021 Moves Online, Adds Extra 3D Printing Vertical

Additive Manufacturing Strategies (AMS), the annual summit co-hosted by 3DPrint.com and SmarTech Analysis, is a conference focused on business intelligence for the additive manufacturing industry. The first year, AMS was...

Featured

3DEXPERIENCE: A Virtual Journey, Part 1

Due to the ongoing COVID-19 crisis, this year’s 3DEXPERIENCE Forum by Dassault Systèmes had to be re-imagined as a virtual event, just like so many other conferences. At 1 pm...

3D Printing Webinar and Virtual Event Roundup, August 2, 2020

It’s another busy week in the 3D printing industry that’s packed full of webinars and virtual events, ranging in topics from medical materials and flexible electronics to polypropylene and market...


Shop

View our broad assortment of in house and third party products.