Marble Builds the MRB-1 Drone With Help From 3D Printing

HeyGears Black Friday

Share this Article

Marble_MRB-1The MRB-1 drone is a removable-wing, composite body aircraft which is capable of staying aloft much longer than a quad copter drone. It’s also very easy to disassemble for transport and it was prototyped with 3D printing.

Aerospace engineer Mathieu Johnsson, the designer of the MRB-1, has an ambitious goal. He wants to develop a commercial, unmanned aerial vehicle capable of capturing 2D and 3D maps. He and four fellow engineers joined forces to put together Marble, the group’s startup company.

Mathieu Johnsson

Mathieu Johnsson

Johnsson currently works for Airbus where he’s responsible for ensuring the structural integrity of a wide range of components. He says his personal focus is on developing software to automate specific processes, increasing efficiency and reliability studies. He also worked on a record-breaking electric aircraft design – the Teaco project – and investigates unmanned aerial vehicle research and additive manufacturing technologies. He was a volunteer on that project which aims at creating the overall design of a single seater electric aircraft to beat the world speed record.

As for the MRB-1, Johnsson says he and his team printed a full compliment of custom parts for their drone, and those parts included an engine housing, winglets and a scaled-down version of the entire drone which helped them visualize the end product. The Marble MRB-1 also boasts custom, flush mounting screws, internally braced wingtips, and an engine mount designed to save weight and preserve the stiffness of the craft.

Marble MRB-1  parts 3D printedJohnsson and Marble settled on a “blended wing” design for their drone to optimize aerodynamic and structural performance. The UAV makes use of composites and 3D printed parts to reduce drag and increase flight time, and they say this combination of strength and efficiency will allow for maximum flight time for its intended purpose of collecting mapping data.

Cameras mounted beneath the drone will be capable of capturing customized, high fidelity maps in the field, and Johnsson and his team used a Form 1+ printer from formlabs to build their prototypes.

“We can now produce exchangeable modules – thanks to the geometrical accuracy – without the need for molded parts,” Johnsson says. “It gives us the possibility to manufacture small batches of early-version product that we will sell to customers before committing to manufacturing methods more optimized for larger scale production. For most parts, we may not be able to manufacture them any other way, without compromising on weight or functionality.”

He adds that prototyping with 3D printing enables the Marble team to create short runs of complex fixtures and fittings which saves on the cost of creating the expensive tooling which would otherwise be necessary to build them.

“Whatever design we make, we only need a few hours to have it manufactured with the Form 1+,” Johnsson says. “This helps designers try unconventional or risky ideas, without hours of preliminary analysis.”

 

c04f92b7-2674-4bc0-b358-38c42f81b936-large



Share this Article


Recent News

Trident Warrior 2025 Becomes a Massive Showcase for 3D Printing — With 11 AM Companies in the Field

EPFL Is Growing Metal



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

AFRL Funds Flexible 3D Printed Antenna Arrays With Real Time Correction

Washington State University (WSU), the University of Maryland, the University of British Columbia, and Boeing researchers have completed work on additively manufactured antenna arrays, which have been published in Nature...

Incus Releases Hammer Pro25, Proving Innovation Doesn’t Need to Be Flashy

Viennese firm Incus is showcasing the new Hammer Pro25. That system is meant to be a scalable Slurry SLA unit created for continuous manufacturing (Incus uses DLP but we refer...

Safran Buys Three Lithoz 3D Printers for Casting Cores

Safran Aircraft Engines has bought three Lithoz CeraFab System S65 for its Gennevilliers site. Gennevilliers is a main site for Safran to make cast and forged parts for aero engines....