Amazingly Realistic Color InkJet 3D Printing Method Created Using Sophisticated Algorithms

Share this Article

c2

When it comes to 3D printing, besides speed, color is the next biggest impediment to widespread use among many areas of manufacturing and prototyping. Although there has been rapid advancements made within the area of colorizing 3D prints using a variety of new techniques, there is still a general lack of consistent methods of doing so.

c5While it is currently impossible to print anything in high definition full color with FDM/FFF techniques, there has been some progress made in the colorization of 3D prints, thanks to Mcor Technologies who uses a method of inkjet printing and cutting of typical office paper, as well as other companies like Stratasys who are using inkjet technology to print photosensitive resins, millions of voxels at a time. While these methods of printing in color certainly provide much needed progress, they both have their downfalls as well.

With all this said, today, new research has been revealed in a paper titled ‘Pushing the Limits of 3-D Color Printing: Error Diffusion with Translucent Materials,’ where Alan Brunton and colleagues at the Fraunhofer Institute for Computer Graphics Research in Germany, outlined an algorithmic process of producing highly defined and accurate colored 3D prints which have an incredibly life-like look to them.

“In this paper, we leverage the knowledge of decades of research in color imaging, color management and 2D color printing, to maximize the quality and exploit the full capabilities of high- resolution multi-material 3D printers–and push their limits towards realism,” wrote the researchers.

They focus on inkjet voxelized 3D printing. For those unfamiliar with the term ‘voxel’, it’s basically a three dimensional pixel which would be represented by a single inkjet droplet. What makes full color 3D printing so incredibly tough in the accurate portrayal of an object, is that in a single 3D print which measures just one cubic centimeter, there are approximately 18 million droplets of resin present. That’s an incredibly large number of voxels to algorithmically control, hence most colorized inkjet 3D prints are not the best when it comes it color accuracy.

c1

What the researchers have done here though, is take things a step further by controlling voxel color very precisely, as well as accounting for the translucency of the resins. This is required because most of the resins currently available have some degree of translucency to them. This means that when they are printed, the colors from within the object also play an important role in how the object is seen from the surface. In the paper, they propose a geometry-adaptive error diffusion halftoning algorithm which includes the following technical contributions:c10

  • “A traversal algorithm for voxel representations of surfaces, which maps 2D anisotropic error diffusion filters onto a surface in a consistently oriented way and requires only local information to do so.”
  • “A layered halftoning algorithm, which combines the traversal algorithm with an arbitrary 2D error diffusion algorithm, and can adapt to the translucency of the materials or increase the color gamut by varying the number of layers”

Basically what they’ve done is create algorithms which are able to direct a 3D printer (in this case a Stratasys Objet 500 Connex 3 machine) to control the color and material of each individual voxel using a layered halftoning method. Halftoning, for those unfamiliar with the term, is the use of dots to simulate continuous tone across an object.

As you may be aware, the Objet 500 machine only supports the mixing of 3 main colors and then a support materials. The researchers, however, decided to dye the support resin yellow, adding an additional color to their palette. As you can see from some of the images provided within the paper, their technique worked remarkably well. Even more incredible is the fact that they believe the method will only improve over time. They write:

“The introduction of more opaque color materials will allow our algorithms to print with larger color gamuts using fewer layers, resulting in a performance boost. Better exploiting parallelism in our computations is a key direction for future work as printer resolutions and build volumes increase. As the number of printing materials increase, it will be important to consider printer models in characterizing the printers and computing profiles.”

It will be interesting to see if this research in anyway is used by Stratasys or any other major 3D printer manufacturer to improve the consistency and results of their inkjet machines.

c6

Share this Article


Recent News

BAC Works with MNL & RPS for Prototyping & Parts

Fraunhofer ILT: Making Tungsten Carbide-Cobalt Cutting Tools with LPBF 3D Printing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing News Briefs: October 18, 2019

The stories we’re sharing in today’s 3D Printing News Briefs run the gamut from materials to new printers. Altair has launched its new industrial design solution, and Remet opened a...

DyeMansion Completes Beta Testing of VaporFuse Surfacing Technology for 3D Printed Parts

3D printing offers a world of infinite potential for innovation, as well as combinations of materials and finishing processes. DyeMansion is just adding to all that goodness now with VaporFuse...

Dow, German RepRap, & Nexus: 3D Printing Colored Liquid Silicone Rubber Parts

Earlier this year, chemical company Dow created a versatile liquid silicone rubber material, called SILASTIC 3D 3335 LSR, which has a low viscosity and is perfect for applications such as...

3D Printing News Briefs: October 10, 2019

We’re talking about events and business today in 3D Printing News Briefs. In November, Cincinnati Inc. is presenting at FABTECH, and Additive Manufacturing Technologies and XJet are heading off to...


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!