When most people imagine wind turbines, they think of huge wind farms dominating the landscape with pristine, sleek, white towers, or perhaps instead think about old-fashioned windmills in an idyllic Dutch landscape. While there is a place for both these large-scale types of wind harvesting in the world, it’s well worth a look at smaller wind turbines as well, particularly those that could be used in remote locations.
These small installations could have a huge impact on communities relying on them for power — and this is exactly the stance one Canadian PhD candidate has in mind. Kyle Bassett, a student at the University of Windsor, has created a project called “A Small Turbine to Make a Big Difference,” and is pitching his plan for 3D printed wind turbines now for use in far-flung villages and other remote areas.
Bassett, who is familiar with the needs inherent in a small, remote community from the year-and-a-half he spent living in Venecia, Nicaragua. Life in Venecia looked to be beautiful…unless you wanted to use electricity. As so often has happened throughout human history, necessity was the mother of invention, and Bassett got to work designing a small-scale wind turbine that could function in any weather conditions to convert wind energy to storable power thanks to a generator that could turn the system into a direct USB charging station or could charge up a lithium-polymer (LiPo) battery pack for portable use.
The small-scale of the design allows for charging small helpful devices like flashlights, cell phones, GPS, and other such electronics. Bassett has since teamed up with like-minded young engineers and designers to create RMRD TECH, which is set “to empower people around the world to create their own electricity with elegant open source designs and 3D printing technology.” The wind turbine is the first undertaking for RMRD, and the group is aiming to have a viable system ready to launch on Kickstarter this coming spring for the Venecia turbines, named for the town where Bassett came up with the idea. Crowdfunding should enable these turbines to become truly accessible.
When looking at the turbine design, the most striking aspect is simply their look; these don’t look like the standard turbines dotting the roadsides all around (or maybe we just have a bunch around Cleveland, and I’ve gotten used to them). The unique sail blade design enables the blades to catch whatever wind there may be, even on seemingly still days, via their vertical-axis array. The vertical-axis design also allows for the entire unit to be packed up into a compact tube, just 100 cm x 10 cm, to transport — and then requires only two minutes to set up once ready for installation on-site to produce about 5V USB power.
Importantly, Bassett’s design is sustainable. Bassett remarked that turning to 3D printing technology truly made possible the ultimate aspects of design and engineering seen in the latest iteration of the Venecia blades. By working on a trial-and-error basis, he was able to work through what designs were best, simplest, and most capable of meeting the needs at hand. 3D printing enables all these qualities to stand out at their best, and at a low cost — a primary consideration for the primarily developing world areas that would benefit most from these turbines.
The prototypes for the Venecia wind turbines have been almost entirely 3D printed. While they still require non-3D printed components like stepper motors, the large portion of 3D printing used allows for cost- and time-efficient manufacture.
Ahead of the Kickstarter campaign, which it seems may upgrade the equipment RMRD TECH has at hand, Bassett has been utilizing a PrintrBot 3D printer, which he has modified for his needs. The PrintrBot Simple Metal prints the turbine components in PLA. All this has been good enough for now, but Bassett admits that PLA, which is famously biodegradable, is not the best long-term choice for technology that might end up in a rainforest. He’s hoping to move to ABS at some point. The goal is also to keep total costs in the sub-$300 range, enhancing affordability as best possible.
Check out the video below where Kyle Bassett describes his project’s beginnings as well as his ideas for the Venecia wind turbines. More videos of the project’s work-to-date are available via YouTube and RMRD TECH’s Experience site.
What do you think of Bassett’s design? Let us know in the RMRD TECH Sustainable Wind Turbine Blades forum thread over at 3DPB.com.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Velo3D Sells Sapphire 1MZ Metal 3D Printer to National Institute for Aviation Research
Velo3D (NYSE: VLD), the Silicon Valley-based original equipment manufacturer (OEM) of metal powder bed fusion (PBF) 3D printers, has sold a Sapphire 1MZ system to the National Institute for Aviation...
Convergent Manufacturing Demonstration at IMTS 2024 Brings Additive and Subtractive Technologies Together
Aristotle said the whole is greater than the sum of its parts. He must have been into manufacturing, because when technologies converge, the system accomplishes tasks the parts cannot. This...
Chicago Sues Glock, Points to 3D Printing in Gun Modifications
Chicago is stepping up its fight against gun violence by expanding a major lawsuit against Glock. The city isn’t just going after the gun manufacturer anymore—now it’s targeting Glock’s parent...
Strati, the World’s First 3D Printed Car, Created by a Diverse Team
In early 2014, a group of companies gathered around a technology being developed at the Oak Ridge National Laboratory Manufacturing Demonstration Facility (ORNL MDF). They had a plastic extruder from...