AMS 2025

Fraunhofer ILT to Develop Intelligent 3D Printed Sensors for Railway Systems

AM Research Military

Share this Article

This past summer, the Fraunhofer Institute for Manufacturing Engineering and Automation (IPA) announced the success of an 18-month project that used ARBURG’s Freeformer 3D printer to produce an inductive proximity sensor directly within its casing. It looks like Fraunhofer is already putting its findings to good use, since another of the organization’s branches, the Fraunhofer Institute for Laser Technology (ILT), announced it had received funding from Germany’s Federal Ministry for Economic Affairs and Energy (BMWi) to work on a project to develop 3D printing intelligent sensor technology for railway systems.

3D printed electronic sensors for railway systems.

Fraunhofer ILT and its collaborators plan to use electronic sensors integrated into 3D metal printing as the centerpiece of the SenseTrAIn project. Image courtesy of Fraunhofer ILT and IPA.

The project, called SenseTrAIn, began in September and is intended to be used by the DB Systemtechnik GmbH, described as “Europe’s largest competency center for railway technology.” In addition, three other companies will be joining Fraunhofer ILT in the effort, including ME-Meßsysteme GmbH, a manufacturer of force and torque sensors, amplifiers, and strain-gauges; vedisys AG, a specialist in the digitalization of public transport data and solutions; and DATAbility GmbH, an engineering software firm focused on the automation of diagnostic and solution-recommendation processes related to complex system databases. This multifaceted, interdisciplinary team is banking on the unprecedentedly rapid coordinating capabilities made possible by 5G to finish the job and expects to work on SenseTrAIn through 2024.

Example of a railroad brake caliper that Fraunhofer ILT will be testing for eventual use in railways across Europe.

Example of a railroad brake caliper that Fraunhofer ILT will be testing for eventual use in railways across Europe. Image courtesy of Fraunhofer ILT and IPA.

According to Fraunhofer ILT’s Simon Vervoort, one of the organization’s research assistants, “We were awarded the contract by the BMWi because the overall package, put together by our project participants, adds up.”

The project is initially facilitated by the developments Fraunhofer has long been working towards in embedding electronic sensors into 3D printed industrial components. Still, the project’s ultimate purpose is to create railway systems that can use AI to inform public transit professionals about the maintenance status of specific train components and even alert them ahead of time concerning the need for repair or replacement.

As such, the research Fraunhofer is planning will focus on determining which train components—as they are currently and conventionally built—meet the essential combined requirements for continuous monitoring and have the greatest potential for being 3D printed with embedded sensors. So far, the team has highlighted a set of components they are most interested in working on. These include door mechanisms, primary and yaw dampers, and especially wheelset bearing caps which are particularly susceptible to wear due to the high temperatures reached with increased loads.

Details of Fraunhofer project on embedded sensors in 3D printed objects.

Fraunhofer has long worked on embedded sensors in 3D printed objects, including this project from Fraunhofer IPA announced in summer 2021. Image courtesy of Fraunhofer ILT and IPA.

The greatest limitation so far, according to Vervoort, is data. Since it’s not yet possible to test under real-world, everyday conditions, the team will use the TrainLab at DB Systemtechnik GmbH to approximate those as closely as possible. It’s an enormously ambitious project with a lot of moving parts (get it?), but the team’s diverse and widely-encompassing research background is undoubtedly an asset. Moreover, the applications that can possibly be discovered for other areas of transportation, and additive manufacturing in general, are virtually endless. I’m sure the rest of the 3D printing industry will be closely watching this project as it unfolds.

Share this Article


Recent News

3D Printing News Briefs, December 7, 2024: Acquisition, Serial Production, & More

Activist Investor Murchinson Secures Four Board Seats at Nano Dimension



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Sponsored

Innovations in Electronics and Additive Manufacturing: Highlights from Electronica and Formnext 2024

In November, J.A.M.E.S. participated in two big industry events: Electronica and Formnext 2024. These international events have been a good opportunity for J.A.M.E.S to show our ability in 3D-printed electronics...

Featured

Printing Money Episode 24: Q3 2024 Earnings Review with Troy Jensen, Cantor Fitzgerald

Welcome to Printing Money Episode 24. Troy Jensen, Managing Director of Cantor Fitzgerald, joins Danny Piper, Managing Partner at NewCap Partners, once again as it is time to review the...

Department of Defense Spent Almost $1B Directly on 3D Printing in 2024, AMR Reports

Additive Manufacturing Research (AM Research) has released its latest market study, “Additive Manufacturing in Military and Defense 2024”, revealing substantial growth in the sector’s adoption of 3D printing technologies. This...

Featured

Nano Dimension Builds Momentum After Q3 Earnings: Julien Lederman Talks Strategy

“We’re building a business grounded in innovation but also ensuring financial sustainability for the long term.” That’s how Julien Lederman, Vice President of Corporate Development at Nano Dimension (Nasdaq: NNDM),...