New Algorithm Improves 3D Body Scanning Precision by 4500%

Share this Article

Together, research scientists from Loughborough University and the University of Manchester in the UK have developed a way to improve the precision and accuracy of 3D body scanning by a whopping 4500%. They wrote a free algorithm, called Gryphon, that can be used with any 3D scanner, and published a paper about their work, “A method for increasing 3D body scanning’s precision: Gryphon and consecutive scanning,” that details how they used the new code to take 121 measurements from 97 participants, and then compared them to today’s industry-standard data processing method.

The abstract of the paper states, “The fashion industry cannot use 3 D Body Scanning to create custom garment patterns because its measurements fail to meet ISO 20685:2010’s tolerances. To advance 3 D Body Scanning’s precision, we present Gryphon: an algorithm that removes the two most extreme measurements from five body scans; removing potentially erroneous data. We assess Gryphon’s precision against current industry practice, determine if consecutive and non-consecutive data capture influences precision, and determine 3 D Body Scanning’s inherent imprecision inherent. We analyse 97 participants over 121 industry-standard measurements for consecutive and non-consecutive data-capture through MANOVA statistical analysis. Under current industry practice, only one measurement meets ISO 20685. However, under Gryphon and consecutive scanning, 97.5% of measurements meet ISO 20685. We also prove that the body’s in-scan movement does not affect reliability. Ultimately, we offer the fashion industry, ergonomists, and practitioners an accessible method to increase 3 D Body Scanning’s precision at a level unavailable under previous methods.”

Figure 1. Accuracy and precision’s relationship in body scanning measurements.

3D body scanning has many different applications, from fashion to medical, and achieving accurate scans is critically important for all of them. The team discovered through their work that the average margin of error for current 3D scanners, when the data is captured non-consecutively, is about 13.8 cm. Their Gryphon code is a simple data processing tool that basically finds errors in the scan measurements and then takes them out. The researchers said that once they used the algorithm alongside consecutive data capturing, the average margin of error dropped to 0.3 cm, or a 4500% precision improvement.

Image courtesy of Loughborough University

“When 3D body scanners measure people, the measurements can be so different from what you would take with a tape measure that the results cannot be easily used,” explained the lead author of the study Dr. Chris Parker, a Lecturer at the University of Loughborough’s School of Design and Creative Arts.

“In fact, 0% of current measurements meet the precision you might expect from an expert, and are too imprecise to design clothes. We change that. At the minute, practitioners who use 3D scanners need a lot of training to spot errors, remove them from the data set, and rescan the person—so mistakes are common. Because of this, 3D body scanning is slow and, in many ways, unreliable. If the 3D body scanning industry adopts Gryphon into their software, then they will make their measurements 4500% more precise than they currently are—and it can all be done through a simple software update. We hope this will speed up 3D body scanning, removing the need for highly trained operators to correct mistakes, and—ultimately—help 3D Body Scanning create custom garments for everyone—without the fuss.”

(Source: TechXplore)

Share this Article


Recent News

3D Printing News Briefs, July 13, 2024: Metal 3D Printer, AFWERX Award, & More

3D Printing Markets Grows 8% Year over Year



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Vision Miner Acquires its 3D Printer Supplier AddWise

Vision Miner, a provider of industrial 3D printing solutions, has announced the acquisition of AddWise, a manufacturer of 3D printers and related products, in a deal valued that the companies...

“Auto Repair Needs 3D Printing” – Harold Sears Weighs in on Auto Additive’s Launch

Despite the automotive sector’s long-time adoption of additive manufacturing (AM), the use of the technology for end parts in consumer vehicles is only just now beginning to take off. And,...

Featured

Formlabs Buys Nascent SLS 3D Printer Competitor Micronics

Formlabs, maker of accessible yet professional 3D printers, has acquired Micronics, which recently debuted with a claim of making a $2,999 3D printer. I, for one, was pretty incredulous about...

The Producers: HP’s President of 3D Printing Savi Baveja Explains How the Company is Addressing Scalability

HP (NSYE: HPQ) and the additive manufacturing (AM) industry in the US need each other. In the long run, I believe that what’s good for one will be good for...