SmarTech Analysis: Over 1.4 Million Kg of AM Copper Powders to Ship by 2029

Share this Article

SmarTech Analysis has published its most recent report on the copper additive manufacturing (AM) market, “Copper Additive Manufacturing 2020–Market Database and Outlook,” projecting that the segment is growing at a rapid pace. By 2029, we estimate that over 1.4 million kilograms of copper powder, both pure copper and copper alloys, will ship for AM use.

The report is made up of two parts: a market analysis of the copper AM sector and a database forecasting the copper AM segment throughout numerous subsegments and broken out in multiple ways across a 15-year projection period from 2014 to 2029. This includes estimates of how much copper powder (pure and alloy) each metal AM technology family has consumed in the past, does and will consume in the present and future in a range of verticals and geographical regions.

For instance, SmarTech has concluded that copper AM adoption will expand rapidly from now until 2029 at a compound annual growth rate of roughly 43 percent, particularly in the Asia Pacific region. And, while the copper 3D printing market is relatively small compared to titanium, it will represent an increasingly large chunk of the broader copper market.

We also anticipate that the total sales of copper AM systems will grow by 34 percent through to 2029, which will introduce opportunities for copper powder sales across all metal 3D printing families. In particular, powder bed fusion (PBF) and bound metal printing will represent the largest revenue opportunities, though directed energy deposition will also increase its market share, despite its comparatively small size.

3D-printed copper parts, including induction coils, made using Trumpf technology. Image courtesy of Trumpf.

Part of the reason for copper AM’s rapid growth is attributed to improvements in copper 3D printing processes and materials. We know that metal PBF technologies are making advances in the processing of pure copper and copper alloys and that these materials themselves are being formulated in ways that make it easier for PBF systems to 3D print with them. This is demonstrated by work by Trumpf, which is now being expanded via a partnership with Heraeus AMLOY. Additionally, bound metal printing technologies are proving themselves to be increasingly capable of 3D printing copper parts, exemplified by recent news from Markforged.

3D-printed copper parts made using bound metal deposition technology from Markforged. Image courtesy of Markforged.

As far as applications are concerned, the industry is proving valuable the use of copper 3D printing for the production of induction coils—now offered by a variety of service bureaus, including GKN Additive, Phoenix Contact, and GH Induction—and heat transfer components, such as heat exchangers and rocket propulsion parts.

3D-printed copper and stainless steel filters made by ExOne and the University of Pittsburgh.

Interestingly, the COVID-19 pandemic has demonstrated the niche potential of copper 3D printing for producing antimicrobial parts. The report discusses the rise of copper 3D printing for medical applications, including some of the stories that we’ve discussed during our coverage of the disease, such as copper door plates and handles by SPEE3D, antimicrobial filament from Copper3D and reusable copper filters 3D-printed by ExOne.

The report examines the current states of copper 3D printing, across all of the major metal AM technology families. Each present specific obstacles for processing the material using established AM system configurations, due to the metal’s physical characteristics, but each also present unique opportunities.

In addition to the analysis found in the report, the accompanying database has the unique feature of being easily integrated into existing internal market intelligence resources. SmarTech describes it well as an “off-the-shelf resource for market metrics and forecasts,” in that, while the report provides context for the database, the database is a versatile tool for providing actionable intelligence across business units.

Among the companies discussed in the report are EOS, Formalloy, Sandvik, Praxair Surface Technologies, Stratasys Direct Manufacturing, 3T and FIT AG, as well as others already mentioned here.

To learn more about the report and database, view its table of contents, or purchase the two-part resource, visit the SmarTech website.

Share this Article


Recent News

Modern Foundry: Analysis & Design Guidelines for 3D Printed Plastic Casts

Comparing 3D-Printed and Traditional Guide Plates for Placing Orthodontic Brackets



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

The Role of Occupational Therapists in 3D Printing & DIY Assistive Technology

Researchers from Belgium and The Netherlands offer the details of their recent study ‘Makers in Healthcare: The Role of Occupational Therapists in the Design of DIY Assistive Technology,’ exploring the...

New Frameworks for Contour-Parallel Toolpaths in FDM 3D Printing

Researchers Tim Kuipers, Eugni L. Doubrovski, Jun Wu, and Charlie C.L. Wang have released the findings of a new study in the recently published ‘A framework for adaptive width control...

PolarOnyx Researchers Use Mixed Powders and Laser 3D Printing to Make Radial Collimators

A collimator is a device that narrows a beam of particles or waves, and radial collimators can oscillate several degrees at a sample position. That’s why neutron collimators are used...

3D-Printed Bioplastics Analyzed for Material Defects & Degradation

Researchers from Poland and Spain seek more answers in the realm of materials science, releasing their findings in ‘Three-Dimensional Printed PLA and PLA/PHA Dumbbell-Shaped Specimens: Material Defects and Their Impact...


Shop

View our broad assortment of in house and third party products.


Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!