Markforged has announced the release of a new metal material for its Metal X 3D printer: copper. Due to the comparatively low-cost of the Metal X system, this makes Markforged technology the most affordable method for 3D printing copper in the industry.
Copper has some very niche uses, mostly associated with its great thermal and electrical conductivity; however, due to its high reflectivity, copper is extremely difficult to work using laser-based metal 3D printing systems. As a result, the industry has often relied on copper alloys to tone down the metal’s luster. In cases where pure copper is 3D printable, the systems that can process it (EBM from GE Additive and DED from Optomec) are typically quite expensive.
The Metal X system is one of two low-cost machines that 3D print metal using bound metal printing (BMD) technology: depositing metal-bound plastic filament to create green parts that must be washed in a debinding station and then sintered in a furnace. This brings down the cost of the complete package (including post-processing equipment) to about $100,000 to $160,000. The materials themselves are meant to be lower cost as well, as they are usually metal powders from the much larger metal injection molding (MIM) industry that have been qualified for the BMD process.
Additionally, because the initial deposition process relies on technology similar to desktop FDM 3D printers, it is much easier than metal powder bed fusion (PBF) systems. While the post-processing steps may seem burdensome to the uninitiated, they are common in MIM and the printer itself is likely to be a lot safer and less complicated than PBF.
The ability to print with copper at a lower cost can be useful in applications that require high thermal or electrical conductivity. While NASA is 3D printing copper for rocket engines, more common and smaller uses in industrial manufacturing include induction coils. Induction heating relies on passing electromagnetic currents through conductive metal elements for the purpose of generating heat. This highly controllable process is used in such applications as welding, brazing, forging, cooking and injection molding.
As it stands, traditionally made copper inductor coils have relatively short lifespans as joints between welded elements experience repeated stress every time they are heated and cooled. Several firms in the 3D printing space (the GH Group, GKN Additive and PROTIQ, to name a few) have learned that 3D printing copper induction coils can increase the lifespan of the parts by two to three times, while also opening up new design possibilities thanks to the geometric complexity allowed with 3D printing.
In the automotive industry, copper is used for spot welding; however, having parts made for welding jobs can take months and cost thousands of dollars. Markforged demonstrated the utility of its new material to make spot welding parts for a large automotive manufacturer.
The auto company tested how copper shanks made using the Metal X would hold up while performing typical welding operations. The company found that the 3D printed shanks performed just as well and showed the same resistance as traditionally made counterparts. Moreover, they believe that using the 3D printed components could reduce lead times by 12 times and part costs by six. As a result, the company plans to introduce the parts to the production line.
The maintenance manager of the automotive manufacturer was quoted as saying, “[O]ur experience with 3D printed copper has been incredible – especially when looking at its conductivity and structural stability. And now that we’ve successfully evaluated weld testing, we plan on expanding our metal 3D printing capacity for this and other metal components. 3D printing copper with Markforged is faster and more cost effective than purchasing complex machined components, and we expect it to help us mitigate downtime exposure and reduce inventory costs by $200,000 a year using only one Metal X system.”
The latest material from Markforged is a useful indicator of the rapidly evolving metal 3D printing space, which is seeing new materials qualified for metal 3D printing processes at an exciting pace thanks in part to bound metal printing technologies like Metal X. As binder jetting systems from HP and Desktop Metal begin entering the marketplace, the larger manufacturing industry will begin changing in ways we may not have even predicted.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Rapid Fusion Introduces UK’s First Large Format Hybrid 3D Printer for Polymers
Rapid Fusion is set to unveil what it describes as the first UK-built large format hybrid 3D printer, Medusa, at an open day event on February 26 at its Skypark...
ADDiTEC’s AMDROiD X: A Portable DED Metal 3D Printer for Defense
Given the outsized role of the U.S. Department of Defense (DoD) in the additive manufacturing (AM) industry, the Military AM (MILAM) conference in Tampa, Florida, has become a key trade...
UK’s First Homegrown Rocket Launch Nears Reality with £20M Investment
A UK-built rocket launching into space from British soil could finally happen soon. The UK has been working toward this for over a decade. In 2017, the government ramped up...
Stratasys Secures $120M Investment from Fortissimo Capital Amid Pressure from Bambu Lab
Stratasys Ltd. (NASDAQ: SSYS) has announced a $120 million investment from Fortissimo Capital, an Israeli private equity firm. The deal involves the direct purchase of 11.65 million newly issued shares...