Chinese researchers are using new technology to improve the total knee arthroplasty (TKA), outlining their findings in ‘Accuracy of a Novel 3D-Printed Patient-Specific Intramedullary Guide to Control Femoral Component Rotation in Total Knee Arthoplasty.’ As 3D printing continues to offer significant impacts within the medical field, the use of guides is becoming more common—and in this study, the authors focus specifically on the creation of a novel 3D‐printed patient‐specific intramedullary guide.
TKA is often used today to treat both pain and deformity in patients suffering from end‐stage knee osteoarthritis (OA). With well-known ‘good postoperative effects,’ TKA is the top choice for treatment in offering patients a better quality of life; however, as with many popular medications and treatments, there are numerous drawbacks—leaving over 20 percent of patients dissatisfied due to issues that include:
- Infection
- Aseptic loosening
- Joint instability
- Misalignment
- Periprosthetic fracture
- Patellar complications
“In the meantime, the accurate intramedullary guide of femur is the basis for ensuring the distal osteotomy of the femur,” explained the researchers. “Incorrect intramedullary guide will make it difficult to balance the inner and outer tension in the extension state of the knee, which will further lead to the imbalance of flexion and extension gap and eventually lead to the early failure of TKA.”
Ultimately, appropriate femoral resection and accurate component rotation are critical to a successful outcome. And while 3D printing has made major impacts in orthopedics, from offering industrial 3D printers to affordable methods for fabricating scaffolds, knee guides, hip guides, and more, in this study, the authors focus on combining 3D printing with patient‐specific instrumentation (PSI).
Performing a prospective randomized controlled trial (RCT) to show that 3DP‐designed PSI could outperform traditional TKA, the researchers evaluated postoperative radiological outcomes, accuracy in 3DP-designed PSI, and the actual feasibility for using the technology in the future. CT scans were converted to 3D printing files, printed out on an UP BOX, using bio-safe polylactic acid.
Eighty patients (65 females and 15 males) participated in the study. They were placed into two groups (experimental, and control) randomly and were not aware of the use of PSI. One surgeon, with over ten years of experience in TKA, performed all the surgeries for the study, as each patient received the LEGION Total Knee System.
After surgery, patients were followed for seven to twelve months, with all outcomes noted at the end.
PSI and conventional methods for the surgery were compared regarding the following:
- Clinical outcome
- American Knee Society knee score (AKS)
- Radiological outcomes
- Posterior condylar angle (PCA)
- Patella transverse axis‐femoral transepicondylar axis angle (PFA)
“PSI group had less postoperative drainage volume but longer operation time than the conventional group (P < 0.05). The AKS and HSS scores after surgery were improved compared with those before surgery in each group (P < 0.05). However, there was no significant difference in the duration of drainage and range of motion (ROM) after surgery between the two groups. For the radiological results, the HKA and PFA were improved after surgery in both groups (P < 0.05).The postoperative PFA and PCA of the PSI group were closer to 0°, which was better than that of the conventional group (P < 0.05). The depth of intramedullary guide in the PSI group was less than the conventional group (P < 0.05). But there was no significant difference in HKA before and after surgery between the two groups as well as the preoperative PFA,” concluded the researchers.
“Although TKA assisted by PSI spent more time during operation, it could assist in intramedullary guide and align femoral rotation more accurately.”
What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Images: ‘Accuracy of a Novel 3D-Printed Patient-Specific Intramedullary Guide to Control Femoral Component Rotation in Total Knee Arthoplasty’]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
AM Under Trump, First Thoughts: Reshoring
Constrained resources and the need to fight climate change have led to a new era of manufacturing focused on re- and nearshoring paired with supply chain resilience. In the battle...
Dyndrite Forms Strategic Partnership with Nikon SLM Solutions for Metal 3D Printing
Dyndrite, the Seattle-based software provider specializing in solutions for digital manufacturing technologies, has announced a strategic partnership with Nikon SLM Solutions to integrate Dyndrite’s LPBF Pro software with Nikon’s metal...
Nikon SLM Hits 1000th 3D Printer Milestone with Bosch Purchase
Nikon SLM Solutions has reached a significant milestone with the production of its 1000th NXG XII 600 system, among the most productive metal additive manufacturing (AM) systems in the industry....
Themes from AM Investment Strategies: Collaboration, Cost Challenges, and Expanding Markets
The 2024 Additive Manufacturing (AM) Investment Strategies event went off without a hitch. The online roundtable, hosted by AM Research (AMR) and Cantor Fitzgerald, dug into the latest trends and...