Denise Vicentin is a 52-year-old Brazilian mother who lost her right eye due to skin cancer in 2010, which also left her with a gaping hole in her face and left her with one half of her jaw. It all started 30 years ago, when Denise developed a non-cancerous facial tumor that was later removed, twice. Unfortunately, it returned again in a malignant form 20 years later. Since then, Denise has avoided being seen in public for years for she has been self-conscious about her wound. It also made it difficult for her to eat and talk. But after her marriage fell apart and after bursting into tears every time she caught her own reflection in the mirror, she was offered a solution.
For years, she has been offered to have a hand-made prosthesis sculpted, but the biggest issue was that this implant and the accompanying procedure reportedly cost around half a million dollars. Denise couldn’t afford that. However, last year Denise was referred to a team of researchers at Paulista University in Sao Paulo who developed an alternative treatment for her condition, which was conveniently cheaper.
The solution offered by the university researchers is a pioneering technique that costs a fraction of the traditional treatments and it’s also twice as fast. The technique consists on using a phone camera and a 3D printer to make the prosthetic.
To achieve the prosthesis, doctors had to take 15 pictures of Denise’s face from different angles to properly make a three-dimensional digital model of her face on a computer. The resulting images were stitched together using photogrammetry. The team used Autodesk 123D Catch, and the device was Samsung Galaxy Note 4. The resulting file was remeshed in 123D Catch and prepared for 3D printing using Meshmixer – both free and from Autodesk. Once the digital model was done, it was the turn of the technicians to 3D print a prototype of the prosthesis. The prototype was used as a guideline to make the final prosthesis from silicone, resin, and synthetic fibers. The prototype was sintered out of Duraform Polyamide C15 on a Sinterstation HiQ. In the paper, the team stated it was a Sinterstation by 3D Systems so its probably one of the red ones that came out in 2004 and not an earlier blue DTM unit. Still, nice work by the 15-year-old 3D Systems machine!
The process took around 12 hours, which included the time it took the researchers to carefully paint the prosthesis to match Denise’s skin and blue-green eye as life-like as possible. Once again, making the prosthesis took around half the time it typically costs with conventional methods.
However, Denise didn’t walk out with the prosthesis once it was completed. It took around a year to complete the whole process since she had to undergo surgeries to make the prosthesis fit her face. To achieve this, doctors had to implement titanium hooks in Denise’s eye socket to properly hold the prosthesis in place. The egg-sized prosthesis made Denise comfortable enough to walk in public, and she claims that she’s happy to finally have her missing piece.
‘When I was on the metro or train, I tried not to pay attention to the stares. At places like the bowling alley, I felt them looking, and the people would even leave when they saw me. It was a long time looking at a face which was missing a piece, so I am so happy. I only took it off to clean it – I even slept with it,’ Denise shares.
But her recovery is not over yet, for she needs to continue her treatment to fully restore her top lip and jaw.
One of the researchers that participated in developing Denise’s prosthesis, Dr Rodrigo Salazar, together with his colleagues, started offering this treatment in 2016. The team specialises in maxillofacial prosthetics, focused on treating those patients with facial disfigurement caused by diseases, trauma, and birth defects.
“In the past, it took much longer work, hours of sculpting by hand, and the process was very invasive, with material on the patient’s face to get an imprint of their appearance. Today with cell phone pictures, we create a three-dimensional model. The method demonstrates that you don’t need big investments to use advanced technology,’ Dr Salazar comments.
The researcher’s methods were published in the peer-reviewed Journal of Otolaryngology – Head & Neck Surgery, where they shared their technique and how the advancement in smartphones and 3D printing technology has helped more than 50 patients so far.
Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
Print Services
You May Also Like
Comedian Asks a Reasonable Question About Reshoring
One especially difficult aspect when you’re doing work related to addressing a long-term problem is that such work typically necessitates the sort of specialization that creates information silos. When that...
Automation Alley Lays the Infrastructure for Distributed Manufacturing in Michigan and Beyond
For over 25 years, Automation Alley has been at the forefront of Michigan’s technological evolution, helping to reposition the state from its Rust Belt reputation to a modern hub of...
Blue Origin & Auburn University Use EOS M290 to Study Copper 3D Printing
Blue Origin, the commercial space company built off of investments from Amazon founder Jeff Bezos, has donated two EOS M290 powder bed fusion (PBF) printers to Auburn University’s National Center...
Strategic Advantage of 3D Printing in a Time of Import Tariffs
The value of 3D printing in mitigating the impact of import tariffs is often underestimated. Now is the time to leverage 3D printing to adapt and profit from the opportunities...