Polish Researchers 3D Printing Novel Holdfast Devices for Atrial Procedure

IMTS

Share this Article

In ‘Evaluation of Local Tissue Reaction After the Application of a 3D Printed Novel Holdfast Device for Left Atrial Appendage Exclusion,’ researchers from Poland begin to experiment even further with 3D printed devices for assistance in cardiac procedures. Here, they experiment with the use of a new holdfast device meant ultimately to help eliminate chances of ischemic stroke. Employing the benefits of SLS 3D printing—with the capabilities to use versatile materials with even greater affordability—the researchers evaluated the results of their new device, implanting the devices in a group of 30 swine.

A macroscopic view of the left atrial appendage (LAA) closed with the holdfast device in group II (one tube coated with vascular implant). (a) The inner surface of the left atrium (LA) and (b) the intersection through the area of a holdfast device is shown. (a) Black arrows indicate the line of atrial wall adhesion placed between tubes of holdfast device. (b) The white arrow indicates the tube of holdfast device without and black arrow with a vascular implant. Red square indicates area showed in Fig. 8. MV mitral valve, LV left ventricle.

A finger-like extension of the left atrium, the left atrial appendage is a non-functional part of the left atrium. It happens to be a ‘prime cardiac site’ for thrombus formation, affecting patients with atrial fibrillation more commonly. And while treatment with antithrombotic treatment is widespread, here, the researchers investigate a more comprehensive approach in ‘obliterating the LAA.’ The use of holdfast devices, while effective, has been fraught with disadvantages, from issues with blood leakage to post-insertion adjustments, and lack of flexibility for modifications.

Microscopic view of the intersection through a holdfast device coated with a vascular implant used in group II. (a) Cross section through the device and the area between tubes of the holdfast device in group II. The the upper tube (*) was not coated with vascular implant and polyamide powder could be seen with an area of cicatrization. The lower tube (triangle) is coated with vascular implant and significant chronic inflammatory infiltrate is visible. (b) Higher magnification of the studied area with visible large number of giant cells.

“Considering the advantages and disadvantages of the available LAA closure devices, we designed a novel holdfast device for LAA obliteration devoid of these shortcomings,” stated the researchers.

The study allowed the researchers to further test biocompatibility, along with observing post-implementation issues. The device was created in partnership with the Technical University of Gdańsk, Poland, made up of two tubes connected with an elastic bow.

“The concept of operation for the device was based on the idea that the tubes would press the LAA base, which would lead to its closure and occlude the connection between the LAA and left atrium,” stated the researchers. “Moreover, the intention was that the device could be freely positioned around the LAA and could be easily adjusted after implantation.”

Their goal was to create a low stiffness spring with a ‘highly degressive characteristic of the device.’ They were able to do this through their choice of material and through shifting the bow crossection axis, with the devices implanted into the two swine groups. Safety and biocompatibility were noted, along with biofunctionality.

There were no perioperative deaths, and LAA occlusions occurred in all the swine.

“The foreign body reaction of the LAA holdfast device made of polyamide powder was found to be at a statistically insignificant level and was lower when compared to the polyester graft. Our device fulfills the criteria of biocompatibility to the highest degree, which makes it a suitable material for manufacturing LAA holdfast devices,” concluded the researchers. “This study proves that our technology may be applied for quick, innovative and individualized production of medical implants.“

3D printing has made huge strides in the medical realm, and definitely within the area of cardiac medicine, from cardiac patches to catheter devices, and even patient-specific heart valves models. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Column charts showing comparison of histological data between study groups.

[Source / Images: ‘Evaluation of Local Tissue Reaction After the Application of a 3D Printed Novel Holdfast Device for Left Atrial Appendage Exclusion’]

 

Share this Article


Recent News

Will There Be a Desktop Manufacturing Revolution outside of 3D Printing?

Know Your Würth: CEO AJ Strandquist on How Würth Additive Can Change 3D Printing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Pressing Refresh: What CEO Brad Kreger and Velo3D Have Learned About Running a 3D Printing Company

To whatever extent a business is successful thanks to specialization, businesses will nonetheless always be holistic entities. A company isn’t a bunch of compartments that all happen to share the...

Würth Additive Launches Digital Inventory Services Platform Driven by 3D Printing

Last week, at the Additive Manufacturing Users’ Group (AMUG) Conference in Chicago (March 10-14), Würth Additive Group (WAG) launched its new inventory management platform, Digital Inventory Services (DIS). WAG is...

Featured

Hypersonic Heats Up: CEO Joe Laurienti on the Success of Ursa Major’s 3D Printed Engine

“It’s only been about 24 hours now, so I’m still digesting it,” Joe Laurienti said. But even via Zoom, it was easy to notice that the CEO was satisfied. The...

Featured

3D Printing’s Next Generation of Leadership: A Conversation with Additive Minds’ Dr. Gregory Hayes

It’s easy to forget sometimes that social media isn’t reality. So, at the end of 2023, when a burst of doom and gloom started to spread across the Western world’s...