Velo3D

Polish Researchers 3D Printing Novel Holdfast Devices for Atrial Procedure

Desktop Metal

Share this Article

In ‘Evaluation of Local Tissue Reaction After the Application of a 3D Printed Novel Holdfast Device for Left Atrial Appendage Exclusion,’ researchers from Poland begin to experiment even further with 3D printed devices for assistance in cardiac procedures. Here, they experiment with the use of a new holdfast device meant ultimately to help eliminate chances of ischemic stroke. Employing the benefits of SLS 3D printing—with the capabilities to use versatile materials with even greater affordability—the researchers evaluated the results of their new device, implanting the devices in a group of 30 swine.

A macroscopic view of the left atrial appendage (LAA) closed with the holdfast device in group II (one tube coated with vascular implant). (a) The inner surface of the left atrium (LA) and (b) the intersection through the area of a holdfast device is shown. (a) Black arrows indicate the line of atrial wall adhesion placed between tubes of holdfast device. (b) The white arrow indicates the tube of holdfast device without and black arrow with a vascular implant. Red square indicates area showed in Fig. 8. MV mitral valve, LV left ventricle.

A finger-like extension of the left atrium, the left atrial appendage is a non-functional part of the left atrium. It happens to be a ‘prime cardiac site’ for thrombus formation, affecting patients with atrial fibrillation more commonly. And while treatment with antithrombotic treatment is widespread, here, the researchers investigate a more comprehensive approach in ‘obliterating the LAA.’ The use of holdfast devices, while effective, has been fraught with disadvantages, from issues with blood leakage to post-insertion adjustments, and lack of flexibility for modifications.

Microscopic view of the intersection through a holdfast device coated with a vascular implant used in group II. (a) Cross section through the device and the area between tubes of the holdfast device in group II. The the upper tube (*) was not coated with vascular implant and polyamide powder could be seen with an area of cicatrization. The lower tube (triangle) is coated with vascular implant and significant chronic inflammatory infiltrate is visible. (b) Higher magnification of the studied area with visible large number of giant cells.

“Considering the advantages and disadvantages of the available LAA closure devices, we designed a novel holdfast device for LAA obliteration devoid of these shortcomings,” stated the researchers.

The study allowed the researchers to further test biocompatibility, along with observing post-implementation issues. The device was created in partnership with the Technical University of Gdańsk, Poland, made up of two tubes connected with an elastic bow.

“The concept of operation for the device was based on the idea that the tubes would press the LAA base, which would lead to its closure and occlude the connection between the LAA and left atrium,” stated the researchers. “Moreover, the intention was that the device could be freely positioned around the LAA and could be easily adjusted after implantation.”

Their goal was to create a low stiffness spring with a ‘highly degressive characteristic of the device.’ They were able to do this through their choice of material and through shifting the bow crossection axis, with the devices implanted into the two swine groups. Safety and biocompatibility were noted, along with biofunctionality.

There were no perioperative deaths, and LAA occlusions occurred in all the swine.

“The foreign body reaction of the LAA holdfast device made of polyamide powder was found to be at a statistically insignificant level and was lower when compared to the polyester graft. Our device fulfills the criteria of biocompatibility to the highest degree, which makes it a suitable material for manufacturing LAA holdfast devices,” concluded the researchers. “This study proves that our technology may be applied for quick, innovative and individualized production of medical implants.“

3D printing has made huge strides in the medical realm, and definitely within the area of cardiac medicine, from cardiac patches to catheter devices, and even patient-specific heart valves models. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Column charts showing comparison of histological data between study groups.

[Source / Images: ‘Evaluation of Local Tissue Reaction After the Application of a 3D Printed Novel Holdfast Device for Left Atrial Appendage Exclusion’]

 

Share this Article


Recent News

3DPOD Episode 110: Additive Manufacturing at Ricoh with Enrico Gallino

3D Printing Webinar and Event Roundup: July 3, 2022



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Swiss EMS Group Picks 3D Systems for New Nylon 3D Printing Material

3D Systems (NYSE:DDD) has announced a partnership with EMS-GRILTECH (SIX:EMSN) to develop new 3D printing materials. Leveraging the polyamide manufacturing expertise of EMG-GRILTECH, a business unit of Swiss chemical company...

3D Printing Webinar and Event Roundup: June 26, 2022

Events for this week have already started, like the ISTE Live conference for technology in education down in New Orleans. Stratasys continues its Experience Tour in Ohio, Divide by Zero...

3D Printing News Briefs, June 23, 2022: New Software, DfAM Course, & More

In today’s 3D Printing News Briefs, Lithoz is introducing a new technology and printer, and Artec 3D has launched an update to its Studio software. Finally, on to partnerships, as...

Raytheon Company Behind Next-Gen Spacesuits Opens New 3D Printing Center

Collins Aerospace, a division of Raytheon Technologies, revealed its new additive manufacturing center and the expansion of its maintenance, repair, and overhaul (MRO) capabilities at its Monroe, North Carolina campus....